

SLR and the Next Generation Global Geodetic Networks

Erricos C. Pavlis & Magdalena Kuźmicz-Cieślak

Joint Center for Earth Systems Technology University of Maryland, Baltimore County and NASA Goddard, 698

Instance (and in the first of the first of

16th International Workshop on Laser Ranging

13 - 17 October 2008 Poznań, Poland "SLR - the next generation"

- Space techniques are indispensable for the development of the terrestrial reference frame and for geodetic metrology
- The current state-of-the-art does not meet science requirements due to poor area
 coverage and aging equipment
- To meet the stringent future requirements (e.g. GGOS), we need to design a new network and deploy modern hardware systems

Outline

- SLR network
 - Present status
 - Future developments
- SLR contribution to ITRF
 - Accuracy assessment
 - Next generation TRF goals
- Simulations for network optimization
 - SLR & VLBI case studies
 - 8, 16, 24 and 32-site network results
- The next phase
 - Taking advantage of large & fast computer clusters (NASA's Columbia grid) for targeted test cases

Multiple techniques to solve the puzzle

- High precision geodesy is very challenging
 - 0.1 mm/yr stability required for sea level monitoring
- Fundamentally different observations with unique capabilities
- Together provide redundancy, cross validation and increased accuracy for TRF
- Strength from improvement of techniques and integration of techniques
- Fundamental prerequisite: Well-distributed, co-located networks with accurate ties

Technique Signal Source Obs. Type	VLBI Microwave Quasars Time difference	SLR Optical Satellite Two-way range	GPS Microwave Satellites Carrier phase
Celestial Frame UT1	<u>Yes</u>	No	No
Scale	<u>Yes</u>	<u>Yes</u>	Yes
Geocenter	No	<u>Yes</u>	Yes
Geographic Density	No	No	<u>Yes</u>
Real-time	No	No	Yes
Decadal Stability	<u>Yes</u>	<u>Yes</u>	Yes

- Single photon operational regime
- Narrow laser divergence
- Multi-kiloHertz operation (with multiple fires in flight)
- Autonomous, independent operations
- Improved epoch timing
- More stable / better defined pointing and ranging calibrations
- Eye-safe operation, LEO to GNSS
- Predictions and collected data submission via WWW (near real-time)
- Some new applications :
 - kHz scanning of satellite surface (allows for determination of spin-axis and rate);
 - Atmospheric seeing measurements along laser beam;
 - kHz Time Transfer (test using AJISAI and Graz system);
 - kHz LIDAR (under implementation now in Graz);
 - Detection of atmospheric layers, clouds, aircraft vapor trails;

LARES _{A/m} = 0.36 x LAGEOS

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2008

Uncertainties due to Limited Knowledge or Modeling *NOW* 5-10 mm 1-5 mm 1-5 mm **Improvements:** Improved s/c CoM offsets New refraction modeling with gradients **Atmospheric Loading & Gravitational Potential** Better ground survey and eccentricity monitoring 10-30 mm Copyright 2006 © Teddy Pavlis

Design of the Future Network

- SLR and VLBI optimal combination (first step):
 - ✓ Simulate SLR and VLBI data for 2004 from four networks of 8, 16, 24 and 32 sites
 - ✓ Assume system performance of NGSLR and VLBI2010
 - Simulation of a 1-year period with SLR and VLBI data (eventually to be extended to ~ 6 years)

– Inclusion of GNSS, DORIS, etc. later, in a future step

Simulation Goal

Which network will deliver consistently and reliably:

<1 mm epoch position and < 0.1 mm/y secular change</p>

Inclusion factor clied (neclarang 1 and in 1 million years)

- Primarily a test to verify the simulation process end-to-end •
- Four networks with 8, 16, 24 and 32 sites •
- Only site positions and EOP estimated from one year of data ۲
- Scaled error covariance projected on the 7 TRF parameters •
- Assuming that errors across years are uncorrelated, we project ٠ the one year results to estimate the number of years to reach our accuracy goals

Network variants (8 \Rightarrow 32)

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2008

One-year Simulation Results

SLR+VLBI_sim8_080322

One-year Simulation Results

Origin & Scale **SLR ONLY** 50 ► 24 vs. 8 - 32 vs. 8 -24 vs. 16 40 🔫 -32 vs. 16 Relative Improvement [%] - 2 · 32 vs. 24 30 20 10 0 Ту Tx Τz Scale **Network Similarity Parameters** SLR+VLBI_sim8_080322scIMM

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2008

One-year Simulation Results

- The simulation validates the real world experience with 8 sites
- The biggest improvement is seen when going from 8 to 16 sites
- The largest impact of an 8 site addition in the origin is seen when going from 16 to 24 sites (~22%), and the least, from 24 to 32 (~8%)
- Results for a 13 year time span (corresponds to ITRF2005) show a 4- or 5-fold improvement compared to what we estimate for ITRF2005
- A projection for a 16 year time span (*ITRF2008*?) shows that a 32 site network approaches the GGOS goal of accuracy in the origin and scale

Some Simulation Issues:

- We currently work with two techniques only (SLR & VLBI)
- Optimal network size with constrained system performance and background model quality
- Assuming perfect site-ties
- Criterion is "TRF" quality: origin, scale and orientation
- Need to consider temporal variations of the TRF parameters
- Solutions to be repeated with the addition of local tie errors with varied weighting schemes
- We will use the 16 site network to investigate the effect of choosing alternate sites on the results (varying the uniformity of the network)

Summary

- Origin and scale marginally controlled by a 24 site network; when extended to 32 sites, it approaches GGOS goals (1 mm)
- Orientation seems to be less dependent on the size of the network
- The effect of additional techniques on the quality of the TRF remains to be assessed
- Need to develop scenarios of "degradation" and "improvement" of nominal design parameters

Future Work

- We may have to consider *improvement of our* models, analysis techniques and our space segment (e.g. SLR targets) to improve TRF accuracy while keeping a reasonable network size to reach our goal
- Our simulation process now runs on a faster CPU to allow a quicker turn-around of future cases (Columbia grid cluster)
- As we improve our turn-around time we plan to investigate scenarios with additional parameters varied (more satellites, different orbits, systematic errors, operational modes, etc.)

<1 mm epoch position and < 0.1 mm/y secular variations

Back-up slides

And an and a second sec

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2008

Maximal Overlapping SLR-VLBI Network [32]

Next Generation NASA Networks ~70 sites

International Laser Ranging Service

nal Lacer Ranaina Cervia

Why 1 mm / 0.1 mm/y?

For every 1 mm/y Z-trend in

ITRF2005: 3.3 +/- 0.07 mm/yr

Erricos C. Pavlis 24

radial = -0.17 mm/vr

2005

2005.5

2004.5

Subset Solutions for an SLR TRF

International Laser Ranging Service

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2908 tober, 2016 C. Pavlis 25

TRF Subset Solutions Statistics [mm]

Case	ΔΧ σ _{ΔΧ}	ΔΥ σ _{ΔΥ}	ΔΖ σ _{ΔΖ}	3D Δ σ _{3D Δ}
3 Odd	-8.37 ±10.91	19.25 ±10.78	-4.20 ±10.32	21 ± 17
4 Even	-12.62 ± 8.93	5.15 ± 8.82	-12.50 ± 8.44	18 ± 16
1 1/2	-41.20 ±35.82	6.26 ±35.38	-10.10 ±33.86	43 ± 61
2	1.74 ± 6.76	8.06 ± 6.68	7.28 ± 6.39	11 ± 11
15 1/4	-60.49 ± 23.68	57.43 ±23.39	7.48 ±22.39	84 ± 40
16	18.65 ± 31.40	-57.81 ±30.88	-6.19 ±29.50	61 ± 53
17	-0.27 ± 18.01	-4.74 ±17.79	15.72 ±17.03	16 ± 31
18	2.07 ± 12.29	7.16 ±12.18	1.73 ±11.60	8 ± 21

16th International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2008 Toth International Laser Ranging Workshop, Poznań, Poland 13-17 October, 2018

