Considerations for an Optical Link for the ACES Mission

Ulrich Schreiber¹

Ivan Procházka²

¹ Forschungseinrichtung Satellitengeodäsie Technische Universität München

² Czech Technical University in Prague Czech Republic

SLR Konfiguration

Transponder Configuration

General Considerations

- Frequency Transfer (narrow bandwidth)
- Time Transfer (broad bandwidth)
- Atmosphere:
 - Dispersion (critical on radio waves)
 - Absorption (transmission: critical in the optical regime)
 - Speckle (substantial variability in signal strength)

Problems

- Pulse conversion (optical electrical) $[\tau]$
 - low signal level
 (Time Angle conversion not satisfactory)
- Dynamic range of optical pulse
 - Timewalk: T(I,T)

Timewalk

The internal detector delay is depending on the intensity of the input light

(bypass of multiplication process)

Discriminator contribution to timing: ⊤ ≈ 10 ns

(0.1% stability corresponds to 10 ps)

Timewalk (Compensation)

- PMTs have lower Bandwidth and less dynamic range
- Different types of APDs have vastly different timewalk
- Recipe: Use best available APD and work strictly in the "single photon regime"

K14 SPAD is the detector of Choice

Proposed Configuration

Spectral Filter ND Filter Diffusor Plate

Attenuation by Spacing

Field of View / Link Equation

- No receiver telescope
- Acceptance angle \approx 1rad
- Eye safe operations due to highly divergent beam
- high background noise (coherent detection scheme)

$$n_{pe} = \frac{n_{ph} \cdot \eta_q \cdot \eta_r \cdot T \cdot A}{\Omega \cdot R^2}$$

Coherent Detection Scheme

Options

LEO Ranging

Angle > 1rad

200µm

$$\boldsymbol{n}_{pe} = \frac{\boldsymbol{n}_{ph} \cdot \boldsymbol{\eta}_{q} \cdot \boldsymbol{\eta}_{r} \cdot T \cdot A}{\boldsymbol{\Omega} \cdot \boldsymbol{R}^{2}}$$

- Coherent Application (Background Light: 1MHz/10nm)
- Demonstration 1-way Ranging (Subsatellites are synchr. wrt Timescale, MWL)

Laser Energy (mJ)	N _{ph} (5″ Div.)	N _{ph} (10" Div.)	N _{ph} (20" Div.)
20	13	3	≈1
50	34	8	2
100	68	17	4
200	137	34	8

Optical signal strength Ground - ACES

Standard Satellite Laser Ranging system, 532 nm, ps pulses

Laser	20 mJ, 200"	0.2 mJ, 20"
Range	540 km	540 km
Photons / m ²	3 * 10 ¹¹	3 * 10 ¹¹
Aperture 1 mm 200 μm 25 μm	3 * 10 ⁵ 10 ooo 200 phot.	3 * 10 ⁵ 10 ooo 200 phot.

The worst case estimate

Background photon flux - ACES

Solar flux $0.2W/m^2/0.1 \text{ nm} \sim 10^{18} \text{ phot/s/m}^2/0.1 \text{ nm}$ Earth albedo0.1Field of View~1 radian , ~ 400 km altitude

- 1. Direct Sun light > 1 * 10¹⁰ ph / s on detector photon counting not possible, no damage

Proposed detector configuration

- K14 SPAD cooled detector package
- Active aperture 200 µm
- Coincidence option on sw level on-board
- Gated operation mode, synchronous with local 10 pps
- Interference filter 1 nm, aperture limited FOV •
- Additional attenuation x1000 (geometry)

- MAIN PARAMETERS
 - timing resolution 50 ps / shot
 - timing stability ~ 10 ps
 - power / mass < 1 W, < 300 g

 - temp. range 30 ... +50 C, no stabilisation needed
 Gate ON time > 0.1 μs daylight
 - > 20 µs night time

Proposed detector features

POSITIVE

- based on proven technology
- extremely simple, rugged, easy to adjust
- low power, low mass
- acceptable timing resolution, stability, reproducibility
- operates day (some SLR) and night time (~ all SLR)
- overload resistant , long lifetime in space
- ground HW & operation compatible with other mission
- photon number estimate

• NEGATIVE

- synchronous operation required (100 ns /10 µs)
- small additional HW required for ground SLR (prototype is existing in our labs)
- downlink data rate ~ 400 bits/s (may be reduced by coincidence option)

