STELLAR SPECTRA

A. Basic Line Formation

R.J. Rutten
Sterrekundig Instituut Utrecht
February 6, 2007



Copyright (© 1999 Robert J. Rutten, Sterrekundig Instuut Utrecht, The Netherlands.

Copying permitted exclusively for non-commercial educational purposes.

Contents
Introduction

1 Spectral classification
(“Annie Cannon”)
1.1 Stellar spectra morphology

1.2 Data acquisition and spectral classification. . . . . . .. ... ..

1.3 Introduction to IDL
1.4 Introduction to LaTeX

2 Saha-Boltzmann calibration of the Harvard sequence
(“Cecilia Payne”)

2.1 Payne’s line strength diagram . . . . . . .. ... ... ... ...
2.2 The Boltzmann and Saha laws . . . . ... ... ... ......
2.3 Schadee’s tables for schadeenium . . . . ... ... ... ... ..
2.4 Saha-Boltzmann populations of schadeenium . . . ... ... ..
2.5 Payne curves for schadeenium . . . . . . ... ... ... ... ..
2.6 Discussion . . . . .. ...
2.7 Saha-Boltzmann populations of hydrogen . . . ... ... .. ..
2.8 Solar Ca™ K versus Ha: line strength . . . . . .. ... ... ...
2.9 Solar Ca™ K versus Ha: temperature sensitivity . . . . . . . . ..

2.10 Hot stars versus cool stars

3 Fraunhofer line strengths and the curve of growth
(“Marcel Minnaert”)

3.1 ThePlancklaw . . . . . . . ... ... .. o
3.2 Radiation through an isothermal layer . . . . . .. .. ... ...
3.3 Spectral lines from a solar reversing layer . . . . ... ... ...
3.4 The equivalent width of spectral lines . . . . ... .. ... ...
3.5 Thecurveof growth . . ... ... ... ... ... ........
Epilogue
References

=R oW W

[NCRNOCIIEN B\ |

......... 17
......... 19
......... 19
......... 21
......... 24
......... 24

27
......... 27
......... 29
......... 30
......... 33
......... 35

37

38

Text available at \tthttp://www.astro.uu.nl/"rutten/education/rjr-material/ssa

(or via “Rob Rutten” in Google).



Introduction

These three exercises concern the appearance and nature of spectral lines in stellar spectra.
Stellar spectrometry laid the foundation of astrophysics in the hands of:

— Wollaston (1802): first observation of spectral lines in sunlight;

— Fraunhofer (1814-1823): rediscovery of spectral lines in sunlight (“Fraunhofer lines”); their
first systematic inventory. Also discussions of the spectra of Venus and some stars;

— Herschel (1823): realization that spectral lines must provide information on the constitution
of stellar matter;

— Kirchhoff & Bunsen (1860): absorption lines in stellar spectra are the reverse of emission
lines from the same particle species in laboratory flames. The strength of the absorption is a
measure of the concentration of the species (abundance);

— Pickering plus “harem” (Williamina Fleming, Antonia Maury, Annie Cannon, and a dozen
other women): large-scale spectral classification using photographic spectrograms taken with
objective prisms. Annie Cannon classifies over 200 000 spectrograms and fine-tunes the Har-
vard spectral classification sequence O —B — A —F — G — K — M. This is a purely morphological
division on the basis of spectral line appearances;

— Hertzsprung (1908) and Russell (1913) independently plot a diagram of stellar absolute mag-
nitude against spectral type (Figure 1). It shows that stars occupy sharply defined locations
in this parameter space;

— Cecilia Payne (1925): demonstration that the Saha ionization law explains stellar line strength
variations. The Harvard spectral sequence is simply a measure of temperature. All stars
have about the same chemical composition — not significantly different from the earth’s
composition apart from hydrogen)!;

— Morgan (1938): introduction of the luminosity classification I — IT — III — IV — V. This is “the
other axis” of the empirical HRD, roughly orthogonal to the main sequence;

— Minnaert and coworkers (1930-1965, Utrecht): introduction of the equivalent width of a line
and the curve of growth for quantitative abundance determination. Detailed inventory of
the solar spectrum, first graphically in the “Utrecht Atlas” (Minnaert et al. 1940), then in
tabular form in “The Solar Spectrum 2935A— 8770A” (Moore et al. 1966), listing equivalent
widths for 24 000 Fraunhofer lines;

— Unsold and coworkers (1940-1970, Kiel): precise stellar abundance determinations using LTE
(Local Thermodynamic Equilibrium) modeling;

— Schwarzschild, Eddington, Milne, Thomas and many others throughout the twentieth century:
development of more general line-formation theory, especially radiation transport through
resonance scattering;

— Avrett, Auer, Mihalas, Hummer, Rybicki and many others, from 1965: application of com-
puters to model non-LTE line formation numerically.

! An update of this finding is that the solar composition is the same as that of the oldest meteorites (carbona-
ceous chondrites) to very high precision, except for the five lightest elements and carbon. The earth has lost much
of its hydrogen to space, while the sun has burned up 99% of its lithium — fortunately, not more than 6% of its
hydrogen yet.



In these three exercises you will retrace some steps of the early pioneers. They don’t require
prior astronomy courses. The topics are:

e spectral classification (you in the role of Annie Cannon);
e Saha-Boltzmann modeling of the Harvard classification (you in the role of Cecilia Payne);

e Schuster-Schwarzschild modeling of Fraunhofer line strengths (you in the role of Marcel Min-
naert).

The sequel sets of exercises “Stellar Spectra B: LTE Line Formation” and “Stellar Spectra C:
NLTE Line Formation” treat more advanced spectral interpretation.
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Figure 1: The Hertzsprung-Russell diagram (HRD). The Harvard spectral sequence along the x axis is
the ordering as to spectral type that you will rediscover yourself in the first exercise. Stars to the right
have red appearance, to the left they are blue. The photographically-determined absolute magnitude
(luminosity at standard distance on a reversed logarithmic scale) is plotted along the y axis. Obviously
the HRD is not filled at random but contains stars only in specific locations. Most stars lie on a diagonal
band that is therefore called the “main sequence”. Some other stars lie on a branch to the upper right
called the “giant branch”. Their presence implies that another parameter than only the spectral type is
needed to define a star, the “luminosity classification” I-II-III-1V-V. Stars with luminosity class V are on
the main sequence (“dwarfs”) while stars with lower luminosity class (higher luminosity) are increasingly
above it (“giants”). The point density in this HRD portrays stellar statistics: there are far more dwarfs
than giants — but it is likely that many more white dwarfs exist than we observe. The stellar locations
in the HRD correspond to the simple equation L = 4w R? O'T;lff but when you are Annie Cannon in the
first exercise you don’t know that yet. You believe that spectral classification gauges important intrinsic
stellar properties whatever they are — making it worthwhile to classify as many as as you can. From
Novotny (1973).



1 Spectral classification
(“Annie Cannon”)

In this exercise you classify stellar spectra without prior knowledge — just as Annie Cannon
did while setting up the Harvard sequence O -B - A -F -G - K - M.

Figure 2: Annie Jump Cannon (1863 — 1941) entered Harvard College Observatory in 1886 as an assistant
to Edward Pickering, director of Harvard Observatory during 42 years. He was devoted to large-scale
stellar spectrometry and set up the monumental “Henry Draper Catalague” of stellar spectra which was
mostly assembled by Annie Cannon and her assistants, funded by a series of gifts from Mrs. Draper who
wanted a memorial to her husband, the first spectroscopist to photograph a stellar spectrum (from a
private observatory on the Hudson River). The effort started in 1886 (Draper died in 1882) and was
concluded in 1924 with the publication of the 9th volume of the Catalogue in the Harvard Annals. By
then, Mrs. Draper’s quarter-million dollar bequest had yielded a quarter million stellar classifications.
More history of astronomical spectroscopy is found in “The analysis of starlight” by Hearnshaw (1986),
from which this photograph is copied.

1.1 Stellar spectra morphology

Figure 3 shows a set of photographic stellar spectrograms. They are rather like the spectrograms
classified at Harvard. Note that they are negatives; stellar spectra usually contain absorption
lines, dark on a brighter background (the “continuum”).

e Cut the page into strips, one per spectrum, and order them into a morphological sequence.
You are the first astronomer studying these spectra and you don’t know what the coding is,
except that the lines have something to do with the presence of specific elements.

e Try to explain all you see and speculate on the meaning of your ordering.

1.2 Data acquisition and spectral classification

This is a canned computer exercise for Windows from: http://www.gettysburg.edu/
academics/physics/clea/CLEAhome.html.



e Get the CLEA-SPEC exercise (file http://www.astro.uu.nl/ rutten/education/
rjr-material/ssa/clea.zip).

e Unzip clea.zip and install the CLEA-SPEC exercise.

e Start the exercise.

e Try out the various options. Classify a number of stellar spectra. Do the observing first if

you prefer taking spectra before classifying them.

1.3 Introduction to IDL

We will use the interactive programming language IDL in the second and third exercise. The
Student Edition suffices. First familiarize yourself with IDL. Under Windows it may be installed
under Research Systems Inc. (RSI, an unfortunate acronym). Under Unix/Linux type idl in a
terminal window, or idlde for a mouse-oriented environment.

e Start IDL.

e Work through the brief IDL manual at http://www.astro.uu.nl/ rutten/education/
rjr-material/idl/manuals. You won’t need the more advanced plotting and the in-
put/output commands for these exercises.

e Write an IDL function ADDUP (array) as the one in the manual in a file ADDUP.PRO and try it
out. You will need to put the file in a partition where you have write access, and to redirect
IDL to that location (under Windows through cd, ’c:\yourdir\idl\’).

1.4 Introduction to LaTeX

You should write a report in which you include the pertinent graphs made with IDL. You should
explain everything seen in the graphs.

If you use LaTeX as text processor in order to gain experience in writing reports the astronomer’s
way then:

e Copy all files at http://www.astro.uu.nl/"rutten/education/rjr-material/latex/

student-report/ into your writing directory.

e Study file latex-bibtex-manual.txt and follow its instructions regarding file report.tex.
The latter is a template for your report. Under Windows you may open it in WinEdt
(http://www.winedt.com/) to process it with MikTex (http://www.miktex.org/). Under
Unix or Linux insert it in a plain-text editor such as Emacs.

e Start writing, and frequently inspect the result.

e Experiment with PostScript or pdf figure insertion.
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Figure 3: Stellar spectrograms taken with a low-dispersion grating spectrometer. The wavelength in-
creases to the right. From Abt et al. (1968).






2 Saha-Boltzmann calibration of the Harvard sequence
(“Cecilia Payne”)

In this exercise you will explain the spectral-type sequence that is studied morphologically in
the first exercise and that is summarized in Figure 5. You so re-act the work of Cecilia Payne at
Harvard. Her 1925 thesis was called “undoubtedly the most brilliant PhD thesis ever written
in astronomy” by Otto Struve. Its opening sentences are:
“The application of physics in the domain of astronomy constitutes a line of investigation that
seems to possess almost unbounded possibilities. In the stars we examine matter in quantities
and under conditions unattainable in the laboratory. The increase in scope is counterbalanced,
however, by a serious limitation — the stars are not accessible to experiment, only to observation,
and there is no very direct way to establish the validity of laws, deduced in the laboratory, when
they are extrapolated to stellar conditions.”

Extrapolation of terrestrial physics laws is precisely what Payne did in her thesis. She applied
the newly derived Saha distribution for different ionization stages of an element to stellar spectra,
finding that the empirical Harvard classification represents primarily a temperature scale. Her
work crowned efforts of Saha, Russell, Fowler, Milne, Pannekoek and others along the same lines.
It illustrates that detailed physics, in this case atomic physics, is usually needed to explain cosmic
phenomena.

Figure 4: Cecilia Payne (1900 — 1979) was educated at Cambridge by Milne and Eddington. She went to
the US in 1923 and spent the rest of her career at Harvard (Boston). Her 1925 thesis was the first one
in astronomy at Harvard University and remains highly readable as a wide review of stellar spectroscopy
at the time. The main conclusion was that stellar composition does not change much from star to star.
Russell had already suggested so a decade earlier, but her thesis under Russells’ guidance, published as
the first Harvard Observatory Monograph, brought the point home. Copied from Hearnshaw (1986).

2.1 Payne’s line strength diagram

The key graph in Payne’s thesis (page 131, earlier published in Payne 1924) is reprinted in
Figure 6. Clearly, the observed behavior in the upper panel is qualitatively explained by the
computed behavior in the lower panel. We will recompute the latter.
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Figure 5: A selection of stellar spectrograms illustrating the Harvard spectral sequence. These example
spectra are printed positively, with the absorption lines dark on a bright background. Wavelengths in
Angstrom (1 A=0.1nm =108 cm). The peak brightness shifts from left to right from the “early-type”
stars (O and B) to the “late-type” stars (G and lower). The sun has spectral type G2V and is a late-type
star. The early-type stars display the hydrogen Balmer lines prominently, but these become weak in
solar-type spectra in which the Cat H and K resonance lines are strongest. The M dwarfs on the bottom
display strong molecular bands. From Novotny (1973).

2.2 The Boltzmann and Saha laws

In thermodynamical equilibrium (TE) macroscopic equipartition laws hold with the gas tem-
perature as the major parameter. These are the Kirchhoff, Planck, Wien and Stefan-Boltzmann
laws for radiation, and the Maxwell, Saha and Boltzmann laws for matter. In this exercise
we are concerned with the latter two. They describe the division of the particles of a specific
element over its different ionization stages and over the discrete energy levels within each stage.
For example, the Saha law specifies the distribution of iron particles between neutral iron (Fe),
once-ionized iron (Fe't), twice-ionized iron (Fe?t), etc., whereas the Boltzmann law specifies
the sub-distribution of the iron particles per ionization stage over the discrete energy levels that
each of the Fe, FeT, Fe?T etc.? stages may occupy. Figure 7 illustrates the energy level structure
of neutral hydrogen.

Boltzmann law. In TE the partitioning of a specific atom or ion stage over its discrete energy
levels (“excitation equilibrium”) is given by the Boltzmann distribution

Ny s _ Irs —Xr.s/kT 1
N U © : (1)

’In astronomy one doesn’t write ions as Fe3T but rather as FeIV. More precisely: Fel is the spectrum of
neutral iron Fe, Fell the spectrum of once-ionized iron Fe™, etc.
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Figure 6: The strengths of selected lines along the spectral sequence. Upper panel: variations of observed
line strengths with spectral type in the Harvard sequence. The latter is plotted in reversed order on a
non-linear scale that was obtained by making the peaks coincide with the corresponding peaks in the
lower panel. The y-axis units are eye estimates on an arbitrary scale. Lower panel: Saha-Boltzmann
predictions of the fractional concentration N, s/N of the lower level of the lines indicated in the upper
panel, each labeled with its ionization stage, on logarithmic y-axis scales that are specified per species at
the bottom, against temperature T along the x axis given in units of 1000 K along the top. The pressure
was taken constant at P, = No kT = 131 dynecm~2 = 13.1 Pascal. From Novotny (1973) who took it
from Payne (1924).

with T" the temperature, k the Boltzmann constant, n, ; the number of particles per cm? in level
s of ionization stage 7, g, s the statistical weight of that level, and x, s the excitation energy of
that level measured from the ground state (r,1), N, = > n, s the total particle density in all
levels of ionization stage r, and U, its partition function® defined by

U, = Zgﬁs e Xr.s/KT (2)

Thus, the neutral stage has » = 1, each ground state is at s = 1, and each ground state has
excitation energy x,1 = 0. and ionization energy to the next stage x,. A radiative deexcitation
between levels (r, s) and (r,t), with level s “higher” than level ¢, releases a photon with energy
Xr,s — Xrt = hv = hc/X, with h the Planck constant, v the photon frequency, ¢ the velocity
of light and A the wavelength. The excitation energy x;s is the energy difference between
the excited level (r,s) and the ground state (r,1). Astronomers usually call it “excitation

3Dutch: toestandssom.
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Figure 7: Energy level diagram for hydrogen. The bound levels are at excitation energies given by (5)
on page 19. They approach the ionization threshold at xg = 13.598 eV for n — oo. The principal
quantum number n equals the level counter s in this simple structure. The fine structure of each level
(splitting in 2n? sublevels) is not shown. For each of the first four hydrogen series the principal bound-
bound transitions between bound levels are marked by vertical lines with the name and the wavelength
of the corresponding spectral line. The series limits (n = oo) are also marked. A bound-free ioniza-
tion/recombination transition is added to the Balmer series. The amount of energy above the ionization
threshold represents the kinetic energy that is gained or lost. A free-free transition (radiative encounter
between a bare proton and a free electron) is also marked. The bound-free and free-free transitions con-
tribute to stellar continua, while the bound-bound transitions produce the hydrogen lines. The Lyman
lines are in the ultraviolet, the Balmer lines are in the visible and the Paschen and Brackett lines are in
the infrared. Some Balmer lines are present in the stellar spectrograms in Figure 5. The solar Balmer «
line (usually called He) is shown in Figure 9. From Novotny (1973).

potential” and measure it from the ground state up? in electron volt, with 1 eV corresponding
to 1.6022 x 10712 erg (1.6022 x 1072 Joule). For example, the HI Balmer « line results from
photonic transitions between levels n = 2 and n = 3 of neutral hydrogen, with x3 = 12.09 eV,
x1,2 = 10.20 eV and wavelength A = he/(x1,3 — x1,2) = 656.3 nm (Figure 7).

The number densities n, s and n,; are called “level populations” and are usually measured per

4Physicists often measure level energies as “binding energy” from the ground state of the next ion down in
wavenumbers (cm ™).
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Figure 8: Energy level diagram for Schadee’s element E, showing the neutral stage (lefthand column,
r = 1) and the first three ionization stages (r = 2 — 4). The level energies increase in 1 eV steps. The
columns may be thought of as being stacked on top of each other since each ion requires the previous
stage to be ionized. The level counter s starts at 1 within each stage (but IDL starts at 0, as do the
level energies). In astronomical convention the spectra of neutral schadeenium E, ionized schadeenium
Et and doubly ionized schadeenium E*t are called EI, EII, and EIII, respectively.

CIIl3 .

The statistical weights g, measure the degeneracy of levels due to magnetic fine splitting. The
latter occurs only in the presence of an external magnetic field; in its absence, magnetic fine-
structure levels coincide and may accommodate more particles than allocated per single level by
the Pauli exclusion principle. The weights measure such excess. For example, neutral hydrogen
atoms have g1 = 2 for their ground state because the electron and proton spins can be parallel
or anti-parallel®.

e Inspect the hydrogen energy level diagram in Figure 7. Which transitions correspond to
the hydrogen lines in Figure 57 Which transitions share lower levels and which share upper
levels?

e Payne’s basic assumption was that the strength of the absorption lines observed in stellar
spectra increases with the population density of the lower level of the corresponding transition.
Why might this be a reasonable assumption (it is)?

e Use this expectation to give initial rough estimates of the strength ratios of the « lines in the
the HI Lyman, Balmer, Paschen and Brackett series.

5The fine-structure transition between the two states produces the 21 cm radio line from interstellar gas.
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Saha law. In TE the particle partitioning over the various ionization stages of an element
(“ionization equilibrium”) is given by the Saha distribution:

Nrpr 1 2Urp <27Tmek‘T>3/2 e xr/kT

N, N U, h? 3
with N, the electron density, m. the electron mass, x, the threshold energy needed to ionize
stage r to stage r + 1, and U,4; and U, the partition functions of ionization stages r + 1 and
r defined by (2). The ionization energy Y, is the minimum photon energy that is absorbed at
ionization or emitted at recombination in a bound-free interaction. The factor two represents
the statistical weight of the freed electron, which has go = 2 due to the two orientations that
its spin may take. The scaling with 1/N, says that ionization is easier if there is room for the
resulting free electron or, reversedly, that recombination from stage r + 1 to stage r requires
catching a free electron. The kinetic energy of the free electron contributes the (.. .)3/ 2 term

through the Maxwell velocity distribution.

| U, | 5000 K | 10000 K | 20000 K |
Uy 1.11 1.46 2.23
Up=Us=U || 111 1.46 2.27
| /Ny [ 5000 K | 10000 K | 20000 K |
s=1 [ 090 0.69 | 0.45-0.44
2 0.09 0.22 0.25
3 0.01 0.07 0.14
4 (-3) 0.02 0.08
5 (-4) 0.01 0.04
6 (-5) (-3) 0.02
7 (-6) (-3) 0.01
10 [(-10)] (-5) (-3)
15 ] [C15)] | (8) (-4)
| N;/N [ion [5000K [ 10000 K | 20000 K |
r=1[E 0.91 (-4) (-10)
2 |Ef | 0.09 0.95 (-4)
3 B2t || (-11) 0.05 0.63
4 | E || (-36) (-11) 0.37
5 | EY | (-82) (-29) (-6)

Table 1: Schadee’s Saha-Boltzmann population tables for element E. The quantity N = > N, is the total
density per cm3 of particles of element E. The notation (-i) stands for order of magnitude ~ 10~%. The
bracketed values in the 5000 K column of the second table are for levels that do not exist in the neutral
stage E.

2.3 Schadee’s tables for schadeenium

This section gives Saha-Boltzmann results for a hypothetical (but iron-like) element in conditions
similar to a stellar atmosphere. They are taken from old lecture notes by Schadee®. He called

5Aert Schadee (1936 — 1999) was a solar physicist at Utrecht University. He started under Minnaert’s guidance
as a spectroscopist concentrating on solar molecular line formation (Schadee 1964), then developed the theory
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his element “E” but I call it “schadeenium” now. It has:

— ionization energies x1 = 7 eV for neutral E, yo = 16 eV for ET, y3 = 31 eV for E>T,
x4 = 51 eV for E3t;

— excitation energies that increase incrementally by 1 eV: x;.s = s — 1 eV in each stage;

— statistical weights g, s = 1 for all levels (r, s).

Schadee evaluated the Saha and Boltzmann laws for element E, electron pressure P, = No kT =
103 dyne cm~2 and temperature 7' = 5000, 10 000 and 20 000 K, respectively. The corresponding
distributions specified by (1)—(3) are given in Schadee’s tables in Table 1.

e Note in the first table that the partition functions computed from (2) are of order unity and
barely sensitive to temperature.

e In the second table, note the steep Boltzmann population decay with x, s given by (1). It is
less steep for higher temperature. The columns add up to unity because the values in this
table are scaled by N,.. They therefore depend on U,., but the small variation between Uy and
Uy in the first table produces a difference at two-digit significance only for s = 1 at 20000 K.
The partition function U; of the neutral stage is the sum of only seven levels; the higher
levels present in stages r > 2 contribute only marginally. The ground state always has the
largest population.

Thus, the lowest levels are the most important ones, due to the rapid decay of the Boltzmann
factor e /AT with Xrs- This explains the insensitivity of U, to temperature in the first table.
Real atoms and ions tend to have larger energy difference between levels 1 and 2, so that their
partition function is often well approximated by the statistical weight of the ground state.

e Inspect the third table, computed from (3). There are only two ionization stages significantly
present per column. For T'= 5000 K element E is predominantly neutral, for 7' = 10000 K
it is once ionized (ET), for higher temperature stages E>* and E** appear while E and E*
vanish.

There is a striking difference between the Boltzmann and the Saha dependencies on temperature.
Ionization may fully deplete the ground stage (third table), whereas excitation never depletes
the ground state by itself (second table) but only changes the steepness of the exponential decay.

e Explain from (1) and (3) why the Saha and Boltzmann distributions behave differently for
increasing temperature.

e Speculate why ionization can fully deplete a stage even though excitation puts only a few
atoms in levels below the ionization level. Hint: what parameter in the Saha distribution can
cause equality between high-level and next-ion population at a given temperature?

Summary: in TE one expects to find only at most two adjacent ionization stages to be present in
a gas of given temperature, with more or less steep exponential population decay with excitation
energy within each ionization stage.

of Zeeman broadening in molecular lines (Schadee 1978), and later worked on the analysis of solar X-ray images
taken with the Utrecht HXIS instrument in the Solar Mazimum Mission (e.g., De Jager et al. 1983).

13



1A=01nm=10"%cm

1 erg = 10~7 Joule

1 dyne cm™2 = 0.1 Pascal = 107% bar = 9.8693 x 10~7 atmosphere

energy of 1 eV=1.60219 x 1072 erg

photon energy (in eV) E = 12398.55/\ (in A)

speed of light ¢ = 2.99792 x 10'° cms™!

Planck constant h = 6.62607 x 10727 ergs

Boltzmann constant k = 1.38065 x 10716 erg K—!
=8.61734 x 1075 eVK™!

electron mass me = 9.10939 x 1072 g

proton mass my, = 1.67262 x 10724 g

atomic mass unit (amu, C=12) ma = 1.66054 x 10~ g

first Bohr orbit radius ag = 0.529178 x 10~ cm

hydrogen ionization energy yg = 13.598 eV

Table 2: Selected units and constants. Precise values available at http://physics.nist.gov/cuu/Constants.

2.4 Saha-Boltzmann populations of schadeenium

We will now reproduce Schadee’s tables by writing IDL routines that compute U, from (2),
ny,s /Ny from (1), and N, /N from (3) for element E. Table 2 specifies various units and constants
(using cgs units in order to expose you to the real world — as seen by astronomers).

e Start a file SSA2.PRO to develop this exercise as an IDL main program. It should get the

function something, inputparameter, inputparameter
IDL statement
IDL statement
return, outputparameter

end

pro something, inputparameter, inputparameter
IDL statement
IDL statement

end

IDL statement ; comment

IDL statement ; comment

STOP ; comment out or delete when fine

IDL statement
IDL statement

end
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The IDL routines (functions and procedures) come at the top of this file or in separate NAME.PRO
files. Start with plain IDL statements in SSA2.PRO and convert these into a routine when you
are happy with them. Process the file to try out your command sequences by saving it and
typing .run ssa2.pro on the IDL command line.

Adding STOP statements to the file makes IDL stop right there, so that you can inspect inter-
mediate results on the command line. Typing help,parameter lets you inspect your parameter
types. Typing print,parameter displays the current parameter value. You can also type indi-
vidual IDL statements on the command line one by one to try them out. The up cursor arrow
brings back previous commands so that you don’t have to retype them. IDL continues the
program when you type .con (or just .c; IDL accepts non-ambiguous abbreviations). Typing a
question mark starts up the IDL help utility.

e Compute the partition functions U, of the Schadee element:

u=fltarr(4) ; declare 4-element float array; set values O

chiion=[7,16,31,51] ; Schadee ionization energies into integer array

k=8.61734D-5 ; Boltzmann constant in eV/deg (double precision)

temp=5000. ; the decimal point makes it a float

for r = 0,3 do $ ; a $ sign extends a command to the next line
for s = 0, chiion(r)-1 do u(r)=ul(r) + exp(-s/(k*temp))

print,u ; print resulting values for U(0)...U(3)

Note that IDL starts counting at zero (just as the eV scale for the levels of element E). The
double precision of the Boltzmann constant forces double precision for the evaluation of the
exponential which gets very small for large s. (If a result exceeds the IDL numerical word
length IDL issues a warning, but it will not break off processing.)

e Compare your results for temp=5000, temp=10000 and temp=20000 to Schadee’s first table
on page 12.

e Now turn the above into a function “PARTFUNC_E,temp” for future use:

function partfunc_E, temp
; partition functions Schadee element
; input: temp (K)
; output: fltarr(4) = partition functions Ul,..,U4
u=fltarr(4)
chiion=[7,16,31,51]
k=8.61734D-5
for r = 0,3 do $
for s = 0, chiion(r)-1 do u(r)=u(r) + exp(-s/(kxtemp))
return,u
end

It has to go to the top of your SSA2.PRO file or to an independent PARTFUNC_E.PRO file and
it should produce:
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IDL> .r ssa2.pro ; .r suffices for .run
% Compiled module: PARTFUNC_E.
IDL> print,partfunc_E(5000)

1.10887 1.10888 1.10888 1.10888
IDL> print,partfunc_E(10000)

1.45590 1.45634 1.45634 1.45634
IDL> print,partfunc_E(20000)

2.23243 2.27134 2.27155 2.27155

e Then write a Boltzmann routine which computes n, /N, from (1):

function boltz_E,temp,r,s
; compute Boltzmann population for level r,s of Schadee element E
; input: temp (temperature, K)
; r (ionization stage nr, 1 - 4 where 1 = neutral E)
; s (level nr, starting at s=1)
; output: relative level population n_(r,s)/N_r
u=partfunc_E(temp)
keV=8.61734D-5 ; Boltzmann constant in ev/deg
relnrs = 1./u(r-1)*exp(-(s-1)/(keVxtemp))
return, relnrs
end

e Check its working by reproducing the second Schadee table on page 12 for the three temper-
atures:

IDL> for s=1,10 do print,boltz_E(5000,1,s)
0.90181500
0.088544707
0.0086937622
.00085359705
.3810428e-05
.2289270e-06
.0795721e-07
.9329280e-08
.7889454e-09
.6475762e-10

~N N N 00 0 0 O

e Then write a Saha routine to reproduce Schadee’s third table on page 12. It gives N,/N
where N = > N, is the total element density. The simplest way to get this ratio is to set Ny
to some value, evaluate the four next full-stage populations successively from (3), and divide
them by their sum = N in the same scale:

function saha_E,temp,elpress,ionstage
; compute Saha population fraction N_r/N for Schadee element E
; lnput: temperature, electron pressure, ion stage

; physics constants

kerg=1.380658D-16 ; Boltzmann constant (erg K; double precision)
kev=8.61734D-5 ; Boltzmann constant (eV/deg)

h=6.62607D-27 ; Planck constant (erg s)

elmass=9.109390D-28 ; electron mass (g)
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; kT and electron density
kevT=kev*temp
kergT=kerg*temp
eldens=elpress/kergT

chiion=[7,16,31,51] ; lonization energies for element E
u=partfunc_E(temp) ; get partition functions U(0)...u(3)
u=[u, 2] ; add estimated fifth value to get N_4 too
sahaconst=(2+*!pi*elmass*kergT/(h*h))~1.5 * 2./eldens
nstage=dblarr(5) ; double-precision float array
nstage(0)=1. ; relative fractions only (no abundance)

for r=0,3 do $
nstage(r+1) = nstage(r)*sahaconst*u(r+1)/u(r)*exp(-chiion(r)/kevT)

ntotal=total (nstage) ; sum all stages = element density
nstagerel=nstage/ntotal ; fractions of element density
return,nstagerel (ionstage-1)

end

The double precision declarations again avoid error messages from too small exponentials.

e The IDL TOTAL(array) function used above sums the elements of an arry of any dimension.
Check it out in the Online Help (7).

e Check your Saha routine against Schadee’s third table on page 12:

IDL> for r=1,5 do print,saha_E(20000,1e3,r)
2.7277515e-10
0.00018027848
0.63200536
0.36781264
1.7197524e-06

IDL> for r=1,5 do print,saha_E(20000,1lel,r)
7.2875161e-16
4.8163564e-08
0.016884783
0.98265572
0.00045945253

The second example shows the larger degree of ionization that occurs at lower pressure.

2.5 Payne curves for schadeenium

If TE holds in a stellar atmosphere one may expect that the observed strength of a spectral line
involving level (r,s) scales with the Saha-Boltzmann prediction for the lower level population
n,s — even if one doesn’t know how spectral lines are formed in detail. That was the underlying
premise of Payne’s analysis. We follow it by plotting curves as in the lower panel of Figure 6
for various levels of the neutral and ionization stages of element E.

e Write a function “SAHABOLT_E, temp,elpress,r,s” that evaluates n, s/N for any level of E
as a function of T" and Pk:

17



function sahabolt_E,temp,elpress,ion,level

; compute Saha-Boltzmann populaton n_(r,s)/N for level r,s of E

; input: temperature, electron pressure, ionization stage, level nr
return, saha_E(temp,elpress,ion) * boltz_E(temp,ion,level)
end

e Inspect a few values:

IDL> for s=1,5 do print,sahabolt_E(5000,1e3,1,s)
0.81709346
0.080226322
0.0078770216
0.00077340538
7.5936808e-05
IDL> for s=1,5 do print,sahabolt_E(20000,1e3,1,s)
.2218751e-10
.8397163e-11
.8286827e-11
.1431900e-11
1.1996980e-11
IDL> for s=1,5 do print,sahabolt_E(10000,1e3,2,s)
0.64895420
0.20334646
0.063717569
0.019965573
0.0062561096
IDL> for s=1,5 do print,sahabolt_E(20000,1e3,4,s)
0.16192141
0.090639095
0.050737241
0.028401295
0.015898254

N W o

These values represent multiplications of Schadee’s second and third tables. They illustrate
again that within a single ionization stage the lower levels always have higher population due
to the Boltzmann factor. The drop-off with s is less steep at higher temperature. The overall
population per stage is set by the Saha law.

e Compute the ground-state populations n,;/N for Payne’s pressure (P, = 131 dyne cm™2)
and a range of temperatures for each ion r, and plot them together in a Payne-like graph:

temp=1000*indgen (31) ; make array 0,...,30000 in steps of 1000 K
print,temp ; check

pop=fltarr(5,31) ; declare float array for n(r,T)

for T=1,30 do $ ; $ continues statement to next line

for r=1,4 do pop(r,T)=sahabolt_E(temp(T),131.,r,1)
plot,temp,pop(l,*),/ylog,yrange=[1E-3,1.1], $
xtitle=’temperature’,ytitle=’population’

oplot,temp,pop(2,*) ; first ion stage in the same graph
oplot,temp,pop(3,*) ; second ion stage
oplot,temp,pop(4,*) ; third ion stage
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e What causes the steep flanks on the left and the right side of each peak? What happens for
T | 0 and for T' T co?

e Payne plotted her curves for the actual lower levels of the lines specified by their wavelengths
in the upper panel, including their Boltzmann factor. Study its influence on your E curves
by adding curves for higher values of s to your plot:

for T=1,30 do $ ; repeat for s=2 (excitation energy = 1 eV)
for r=1,4 do pop(r,T)=sahabolt_E(temp(T),131.,r,2)

oplot,temp,pop(1,*)

oplot,temp,pop(2,*)

oplot,temp,pop(3,*)

oplot,temp,pop(4,*)

for T=1,30 do $ ; repeat for s=4 (excitation energy
for r=1,4 do pop(r,T)=sahabolt_E(temp(T),131.,r,4)

oplot,temp,pop(1,%*)

oplot,temp,pop(2,*)

oplot,temp,pop(3,*)

oplot,temp,pop(4,*)

3 eV)

e Explain the changes between the three sets of curves. What happens for elements with
lower /higher ionization energies than E has?

2.6 Discussion

The E curves in your plot indeed resemble Payne’s curves in Figure 6. In order to reproduce her
lower panel in detail you would have to evaluate the partition functions for the actual elements
that she used and to enter the actual excitation energies of the lower levels of the lines that
she used. More work, but in principle not different from what you have done for element E.
So, you have confirmed Payne’s conclusion that the Harvard classification of stellar spectra is
primarily an ordering with temperature, controlled by Saha-Boltzmann population statistics.
In following her footsteps, you have crossed the border between morphological description and
physical modeling, from astronomy to astrophysics. Congratulations!

2.7 Saha-Boltzmann populations of hydrogen

It is easy to write an exact Saha-Boltzmann routine for hydrogen. Its ionization energy y; =
13.598 eV; the statistical weights g, s and level energies x; s of neutral hydogen are given by

g1,s = 2 5% (4)
X1s = 13.598(1—1/s%) eV (5)
while the single ion stage (bare protons) has Us = g21 = 1.

e Write a function “SAHABOLT_H,temp,elpress,s” that produces the population of hydrogen
level s (of course by copying bits and pieces with cut & paste from your routines for element
E):

function sahabolt_H,temp,elpress,level
; compute Saha-Boltzmann population n_(1,s)/N_H for hydrogen level
; ilnput: temperature, electron pressure, level number
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; physics constants

kerg=1.380658D-16 ; Boltzmann constant (erg K; double precision)
kev=8.61734D-5 ; Boltzmann constant (eV/deg)

h=6.62607D-27 ; Planck constant (erg s)

elmass=9.109390D-28 ; electron mass (g)

; kT and electron density

kevT=kev*temp

kergT=kerg*temp

eldens=elpress/kergT

; energy levels and weights for hydrogen

nrlevels=100 ; reasonable partition function cut-off value

g=intarr(2,nrlevels) ; declaration weights (too many for proton)

chiexc=fltarr(2,nrlevels) ; declaration excitation energies (idem)

for s=0,nrlevels-1 do begin ; enclose multiple lines with begin...end
g(0,s)=2%(s+1)"2 ; statistical weights
chiexc(0,s)=13.598*(1-1./(s+1)"2) ; excitation energies

endfor ; begin...end cannot go on command line!

g(1,0)=1 ; statistical weight free proton

chiexc(1,0)=0. ; excitation energy proton ground state

; partition functions
u=fltarr(2)

u(0)=0

for s=0,nrlevels-1 do u(0)=u(0)+ g(0,s)*exp(-chiexc(0,s)/kevT)
u(1)=g(1,0)

; Saha

sahaconst=(2*!pi*elmass*kergT/(h*h))~1.5 * 2./eldens
nstage=dblarr(2) ; double-precision float array
nstage(0)=1. ; relative fractions only

nstage(1) = nstage(0) * sahaconst * u(1)/u(0) * exp(-13.598/kevT)
ntotal=total (nstage) ; sum both stages = total hydrogen density
; Boltzmann

nlevel = nstage(0)*g(0,level-1)/u(0)*exp(-chiexc(0,level-1)/kevT)
nlevelrel=nlevel/ntotal ; fraction of total hydrogen density
;stop ; in for parameter inspection

return,nlevelrel
end

e Computing the exact partition function this way is a bit overdone since it turns out that
U(1) (= u(0)) = g1,1 = 2.00000. You can see this by activating the STOP statement before
the RETURN statement and then listing internal subroutine parameters:

IDL> .r ssa2.pro
IDL> print,sahabolt_H(5000,1e2,1)

% Stop encountered: SAHABOLT_H 115 ssa2.pro
IDL> print,u
2.00000 1.00000
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IDL> for s=0,5 do print,s+1,g(0,s),chiexc(0,s),$
IDL> g(0,s)*exp(-chiexc(0,s)/kevT)

1 2 0.00000 2.0000000
2 8 10.1985  4.2020652e-10
3 18 12.0871 1.1803501e-11
4 32 12.7481  4.5249678e-12
5 50 13.0541 3.4757435e-12
6 72 13.2203  3.4032226e-12

IDL> for s=0,nrlevels-1,10 do print,s+1,g(0,s),chiexc(0,s),$
IDL> g(0,s)*exp(-chiexc(0,s)/kevT)

1 2 0.00000 2.0000000
11 242 13.4856  6.1790222e-12
21 882 13.5672 1.8637147e-11
31 1922 13.5838  3.9070233e-11
41 3362 13.5899 6.7387837e-11
51 5202 13.5928 1.0357868e-10
61 7442 13.5943 1.4763986e-10
71 10082 13.5953  1.9957013e-10
81 13122 13.5959  2.5936970e-10
91 16562 13.5964  3.2703819e-10

The excitation energies were already illustrated in Figure 7 on page 10. The first excited level
s = 2 is at such high excitation energy that its small Boltzmann factor makes its population
negligible in comparison with the ground state population. However, the increase with s at large
values of s shows that the hydrogen partition function would get infinite if too many levels are
included in the summation, because g; s ~ s? while x1 s — 13.598. Actually, all atoms and ions
share in this behavior at very high excitation energy since they all get to be “hydrogenic” in
nature when the valence electron sits in a nearly detached orbit. This singularity has been a
cause of much debate, but real atoms are not worried by it. They are never alone’ and loose
their identity through interactions with neighbours long before they grow as large as this. A
reasonable cut-off value to the orbit size is set by the mean atomic interdistance N—1/3 (page 260

of Rybicki and Lightman 1979):
Smax & 1| — N7V6, (6)
aop

giving smax = 100 for hydrogen at Ny = 10'2 cm™3. With such a cut-off the partition functions
are generally not much larger than the ground state weights at all temperatures of interest —
those at which the pertinent stage of ionization is not devoid of population anyhow.

2.8 Solar Ca™ K versus Ha: line strength

Figure 5 on page 8 shows that in solar-type stars the hydrogen Balmer lines become much
weaker than the Cat K s = 2 — 1 line at A = 3933.7 A (called the calcium K line®). The
spectrograms in Figure 5 do not include the principal line of the Balmer sequence, the hydrogen

"They are never alone where TE holds. In intergalactic space they may be quite lonely, but they won’t sit in
their high levels out there.

8The astronomical notation is Call K. The K is an extension from Draper to the original alphabetic solar
spectrum feature list by Fraunhofer, who only named Call H.
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s =3 —2line at A = 6563 A which is called the Ha line (see the hydrogen term diagram in
Figure 7 on page 10), but even this line gets much weaker than Ca™ K in solar-type stars. This
is demonstrated in Figure 9 which shows high-precision tracings of the solar spectrum around
these two wavelengths. Obviously, the main line in the lefthand panel (Ca™ K) is much stronger
than the one at right (Ha). Since stars as the sun are mostly made up of hydrogen, it may
come as a surprise that a calcium line is much stronger than a hydrogen line. However, by now
(in your role of being Cecilia Payne) it is clear to you that line strength ratios between different
elements do not only depend on their abundance ratio but also on the temperature. We will
quantify this dependence for this solar line pair.
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Figure 9: Two sections of the solar spectrum displaying the strongest lines in the visible region (except
that Ca™ H at A\ = 3966 A is very similar to its doublet twin Ca't K). The lefthand segment contains
the central part of the Ca™ K line in the violet region of the spectrum, the righthand segment the Ho
line in the red. Each segment is 30 A (3 nm) wide. The vertical axis measures disk-averaged solar
intensity so that these plots portray the solar spectrum as if it came from a non-resolved distant star.
The units are erg cm™2 57! cm™! steradian™!, the same as for the Planck function defined by equation
(7) on page 28. The line crowding is much larger in the violet than in the red. Most of the numerous
“blends” (overlapping lines) that are superimposed on the wings of Ca™ K are due to iron, an element
with extraordinary rich energy level structure. The strong blend at 3944 A is due to aluminum atoms.
Very close to line center the Ca™ K line displays two tiny emission peaks which betray the presence of
magnetic fields in a way that is not understood. Stars that are more active than the sun have much
higher peaks in their Ca™ K line cores. The damping wings start just outside these peaks and extend
much further than the plotted range. The Ha line in the righthand panel is much weaker. The cores of
both lines are formed in the solar chromosphere, the regime where magnetic fields take over from the gas
pressure in dominating solar fine structure. There are hundreds of studies (including five Utrecht PhD
theses) of cool-star chromospheres using the Ca™ K line core because its emission is an indicator of stellar
magnetism. The Ca™ K line is also much used in recent studies of solar chromospheric dynamics. The
temperature sensitivity of Ho makes it complementary to Ca™ K as an atmospheric diagnostic, especially
of the magnetic field structures and their not-understood heating processes in the upper chromosphere.
These show up as thread-like brightenings and darkenings arranged as flower petals in images taken in
Ha line-center radiation. These plots are made from ASCII files of the “Kitt Peak Solar Flux Atlas”
by Kurucz et al. (1984), downloaded from ftp://ftp.noao.edu/fts/fluxatl. The atlas was made with the
Fourier Transform Spectrometer at Kitt Peak, a 1 m Michelson interferometer that produces unsurpassed
spectral resolution (\/AX = 10°), an order of magnitude better than the “Utrecht Atlas” of the solar
disk-center intensity spectrum by Minnaert et al. (1940).

e Explain qualitatively why the solar Ca™ K line is much stronger than the solar Ha line,
even though hydrogen is not ionized in the solar photosphere and low chromosphere (T =
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’nr. ‘ element | solar abundance‘ X1 ‘ X2 ‘ X3 ‘ X4

1 H 1 13.598 - - -~
2 He 7.9 x 1072 24.587 | 54.416 - -

6 C 3.2x 1074 11.260 | 24.383 | 47.887 | 64.492
7 N 1.0 x 1074 14.534 | 29.601 | 47.448 | 77.472
8 o) 6.3 x 1074 13.618 | 35.117 | 54.934 | 77.413
11 Na 2.0 x 1076 5.139 | 47.286 | 71.64 | 98.91
12 Mg 2.5 x 107° 7.646 | 15.035 | 80.143 | 109.31
13 Al 2.5 x 1076 5.986 | 18.826 | 28.448 | 119.99
14 Si 3.2 x107° 8.151 | 16.345 | 33.492 | 45.141
20 Ca 2.0 x 1076 6.113 | 11.871 | 50.91 | 67.15
26 Fe 3.2x107° 7.870 | 16.16 | 30.651 | 54.8
38 Sr 7.1 x 10710 5.695 | 11.030 | 43.6 57

Table 3: Solar abundances (relative to H) and ionization energies (eV) for some elements. Mostly from
Allen (1976).

4000 — 6000 K) where these lines are formed, and even though the solar Ca/H abundance
ratio is only Nca/Nu = 2 x 1076, Assume again that the observed line strength scales with
the lower-level population density (which it does, although nonlinearly through a “curve of
growth” as you will see in the next exercise).

e Prove your explanation by computing the expected strength ratio of these two lines as function
of temperature for P, = 10? dyne cm™2. Simply combine the actual calcium ionization
energies with the Schadee ad-hoc level structure. Since the Ca™ K line originates from the
Ca™ ground state the higher levels are only needed for the partition functions and those are
estimated to within a factor of two by the Schadee recipe. Therefore simply copy all your
routines for Schadee’s element E into routines for Ca and only adapt the ionization energies.

They are given in Table 3.

e Then apply these routines as in:

temp=indgen (191)*100.+1000. ; T = 1000-20000 in delta T = 100
CaH = temp ; declare ratio array
Caabund=2.E-6 ; A.Ca=N_Ca / N_H

for i=0,190 do begin
NCa = sahabolt_Ca(temp(i),le2,2,1)
NH = sahabolt_H(temp(i),le2,2)
CaH (i)=NCa*Caabund/NH
endfor
plot,temp,CaH, /ylog,$
xtitle=’temperature’,ytitle=’Ca II K / H alpha’

e Estimate the solar line strength ratio Ca™ K/Ha. The temperature ranges over T' = 4000 —
6000 K in the solar photosphere. You should get:

IDL> print,’Ca/H ratio at 50007K = ’,CaH(where(temp eq 5000))
Ca/H ratio at 50007K = 7649.39
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2.9 Solar Ca' K versus Ha: temperature sensitivity

The two lines also differ much in their temperature sensitivity in this formation regime.

e Show this by plotting the relative population changes (Anca/AT)/nca and (Anyg/AT)/ng
for the two lower levels as function of temperature for a small temperature change AT

; temperature sensitivity CalIK and Halpha

temp=indgen(101)*100.+2000. ; T = 2000-12000, delta T = 100
dNCadT = temp ; declare array
dNHdt = temp ; declare array
dT=1.
for i=0,100 do begin
NCa = sahabolt_ca(temp(i),1e2,2,1) ; Ca ion ground state
Nca2 = sahabolt_ca(temp(i)-dT,1e2,2,1) ; idem dT cooler
dNCadT(i)= (NCa - NCa2)/dT/NCa ; fractional diff quotient
NH = sahabolt_H(temp(i),le2,2) ; H atom 2nd level
NH2 = sahabolt_H(temp(i)-dT,1e2,2) ; idem dT cooler
dNHAT(i) = (NH-NH2)/dT/NH ; fractional diff quotient
endfor

plot,temp,abs(dNHAT) ,/ylog,yrange=[1E-5,1],$
xtitle=’temperature’,ytitle=’abs d n(r,s) / n(r,s)’
oplot,temp,abs(dNCadT) ,linestyle=2 ; Ca curve dashed

e Around T' = 5600 K the Ca™ K curve dips down to very small values; the Ha curve does that
around 7' = 9500 K. Thus, for 7" ~ 5600 K the temperature sensitivity of Ca™ K is much
smaller than the temperature sensitivity of Ha. Each dip has a An > 0 and a An < 0 flank.
Which is which?

e The dips can be diagnosed by overplotting the variation with temperature of each population
in relative units:

; recompute as arrays and overplot relative populations

NCa=temp ; declare array

NH=temp ; declare array

for i=0,100 do begin
NCa(i) = sahabolt_ca(temp(i),1le2,2,1) ; Ca ion ground state
NH(i) = sahabolt_H(temp(i),1le2,2) ; H atom 2nd level

endfor

oplot,temp,NH/max (NH)

oplot,temp,NCa/max (NCa) ,linestyle=2 ; Ca curve again dashed

e Explain each flank of the two population curves and the dips in the two temperature sensi-
tivity curves.

2.10 Hot stars versus cool stars

e Final question: find at which temperature the hydrogen in stellar photospheres with P, = 102
is about 50% ionized:
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IDL> for T=2000,20000,2000 do print,T,sahabolt_H(T,1le2,1)

2000 1.0000000
4000 1.0000000
6000 0.99996480
8000 0.94991572
10000 0.17471462

12000 0.0096162655
14000 0.0010102931
16000 0.00017720948
18000 4.4167459e-05
20000 1.4132857e-05

or with a plot:

temp=indgen(191)*100.+1000. ; array 1000 - 20 000 in steps 1000
nH=temp ; declare same size array
for i=0,190 do nH(i)=sahabolt_H(temp(i),le2,1)
plot,temp,nH,$
xtitle=’temperature’,ytitle="neutral hydrogen fraction’

This transition divides the “hot” from the “cool” stars. It also represents a dividing line between
the mechanisms that cause the stellar continuum. In hot stars the hydrogen ionization produces
so many free electrons that Thomson scattering of photons off the free electrons dominates the
formation of the stellar continuum. In cool stars there are only a few free electrons, none from
hydrogen but only from the ionization of elements with lower first ionization energy (Si, Fe, Al,
Mg, Ca, Na; see Table 3). Interactions between these rare free electrons and the abundant neutral
hydrogen atoms, momentarily combining into “H-minus ions”, then dominate the formation of
the stellar continuum.
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3 Fraunhofer line strengths and the curve of growth
(“Marcel Minnaert”)

In Exercise 1 you re-invented the Harvard spectral classification in order to typecast stellar
spectra morphologically. In Exercise 2 you interpreted the Harvard classification in terms of
physics by using the Saha and Boltzmann laws for the partitioning of the particles of an element
over its various modes of existence. The strength variations of spectral lines along the main
sequence were found to be primarily due to change in temperature.

We have not yet answered the question yet how spectral lines form. This issue is addressed here
following Minnaert’s work at Utrecht between World Wars I and II. This exercise introduces you
to some of the basic concepts introduced by Minnaert. They are still in use and are instructive
to re-develop yourself.

Figure 10: Marcel G.J. Minnaert (Brugge 1893 — Utrecht 1970) was a Flemish biologist who became a
physicist at Utrecht after World War I, picking up W.H. Julius’ interest in solar spectroscopy and taking
over the solar physics department after Julius’ death in 1925. In 1937 Minnaert succeeded A.A. Nijland as
director of “Sterrewacht Sonnenborgh” and revived it into a spectroscopy-oriented astrophysical institute.
In addition, he was a well-known physics pedagogue. His three books “De natuurkunde van het vrije
veld” (Outdoors Physics) are a delightful guide to outdoors physics phenomena. I took this photograph
in 1967.

3.1 The Planck law

For electromagnetic radiation the counterparts to the material Saha and Boltzmann distributions
are the Planck law and its relatives (the Wien displacement law and the Stefan-Boltzmann law)?.
They also hold strictly in TE (‘Thermodynamical Equilibrium”) and reasonably well in stellar
photospheres. The Planck function specifies the radiation intensity emitted by a gas or a body

9The Saha and Boltzman (and also the Maxwell) distributions have exp(—E/kT) without the —1 that is
present in the denominator of the Planck function. The reason for this difference is a basic one: atoms, ions and
electrons are fermions that cannot occupy the same space-time-impulse slot, but photons are bosons that actually
prefer to share places, as in a laser.
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in TE (a “black body”) as:
2hc? 1

BA(T) = N> ehc/ART _ | (7)

with h the Planck constant, ¢ the speed of light, k the Boltzmann constant, A the wave-
length and T the temperature. The dimension of B) in the cgs units used here is
ergem 25~ em ™! steradian™! (in standard units W m~—2 m~!steradian—!), which is the dimen-

sion of radiative intensity in a specific direction!®.

e Write an IDL function PLANCK,TEMP,WAV in cgs units. The required constants are given in
Table 2 on page 14. For TEMP=5000 and WAV=5000E-8 (5000 Angstrom, in the yellow part of
the visible wavelength region and at about the sensitivity peak of your eyes) it should give:

IDL> .com planck

% Compiled module: PLANCK.

IDL> print,planck(5000,5000E-8)
1.2107502e+14

e Use it to plot Planck curves against wavelength in the visble part of the spectrum for differ-
ent stellar-like temperatures, for example with the following statements in a main IDL file
SSA3.PRO:

wav=indgen (100) *200.+1000. ; produces wav(0,...99) = 1000 - 20800
print,wav ; check that
b=wav ; declare float array of the same size

for i=0,99 do b(i)=planck(8000,wav(i)*1E-8)
plot,wav,b,xtitle=’wavelength (Angstrom)’,ytitle=’Planck function’,$

xmargin=[15,5],$ ; otherwise no place for y-axis label
charsize=1.2 ; bigger characters
for T=8000,5000,-200 do begin ; step from 8000 K down to 5000 K
for i=0,99 do b(i)=planck(T,wav(i)*1E-8)
oplot,wav,b ; overplots extra curves in existing graph
endfor ; begin...end sequences can’t go on command line

e Study the Planck function properties. By(7) increases at any wavelength with the tem-
perature, but much faster (exponentially, Wien regime) at short wavelengths then at long
wavelengths (linearly, Rayleigh-Jeans regime). The peak divides the two regimes and shifts
to shorter wavelengths for higher temperature (Wien displacement law). The spectrum-
integrated Planck function (area under the curve in this linear plot) increases steeply with
temperature (Stefan-Boltzmann law).

e Add ,/ylog to the plot statement to make the y-axis logarithmic. Inspect the result. Then
make the x-axis also logarithmic and inspect the result. Explain the slopes of the righthand
part.

0The quadratic length dimension (cm_z) represents a measurement area oriented perpendicular to the beam
direction. The linear length dimension (cm™!') represents the spectral bandwidth (AX = 1cm). It becomes
Av =1 Hz for B, in frequency units. Steradians measure beam spreading over solid angle (a wedge of a sphere),
just as radians measure planar angles (a wedge of a circle). Sometimes By is defined as fluz, the energy radiated
outward by a surface, without steradian™! and a factor 7 larger.
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3.2 Radiation through an isothermal layer

We need another quantity next to the radiation produced by a gas of temperature 7', namely
the amount of absorption. Take the situation sketched in Figure 11. A beam of radiation with
intensity I(0) passes through a layer in which it is attenuated. The weakened intensity that

emerges on the right is given by
I=1(0)e ", (8)

in which the decay parameter 7 specifies the attenuation by absorption in the layer. It is a
dimensionless measure of the opaqueness that is usually called the “optical thickness” because
it measures how thick the layer is, not in cm but in terms of its effect on the passing radiation.
Nothing comes through if 7 > 1 and (almost) everything comes through if 7 < 1.

-1
1(0) 1(0)e

*Qg

0 X T

Figure 11: Radiation through a layer. The incident intensity at the left is attenuated by absorption in the
layer as specified by its total opaqueness T (the “optical thickness” of the layer). The internal production
of radiation AI(x) in a thin sublayer with thickness Ax that is added to the beam locally is given by
the product of the Planck function B[T(x)] and the sublayer opaqueness At(x); this contribution is then
attenuated by the remainder of the layer.

The next step is to add the radiation that originates within the layer itself. Its amount is locally
equal to AI = B)(T) Ar. The scaling with A7 comes in through a Kirchhoff law which says
that a medium radiates better when it absorbs better (a “black” body radiates stronger than a
white one). This local contribution at a location x within the layer is subsequently attenuated
by the remainder of the layer to the right, so that its addition to the emergent beam is given
by:

ALy = By\[T(2)] Ar(z) e~ "—7@), (9)

The total emergent intensity is:
I = L(0) e + /0 " ByT(2)] ¢ @) dr(z) (10)
which for an isothermal layer (7" and therefore also By(7') independent of z) simplifies to:
Iy=1,(0)e "+ By (1— 7). (11)

e Derive (11) from (10).

e Make plots of the emergent intensity I, for given values By and I)(0) against 7:
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B=2.

tau=indgen(101)/10.+0.01 ; set array tau = 0.01-10 in steps 0.01
int=tau ; declare float array of the same size
for I0=4,0,-1 do begin ; step down from I0=4 to I0=0

for i=0,100 do int(i)=I0 * exp(-tau(i)) + B*(l-exp(-tau(i)))
if i0 eq 4 then plot,tau,int,$
xtitle=’tau’,ytitle=’Intensity’,charsize=1.3
if i0 ne 4 then oplot,tau,int
endfor

e How does Iy depend on 7 for 7 < 1 when I)(0) = 0 (add ,/x1og,/ylog to study the behavior
at small 7)? And when I(0) > B)? Such a layer is called “optically thin”, why?

e A layer is called “optically thick” when it has 7 > 1. Why? The emergent intensity becomes
independent of 7 for large 7. Can you explain why this is so in physical terms?

3.3 Spectral lines from a solar reversing layer

We will now apply the above result for an isothermal layer to a simple model in which the
Fraunhofer lines in the solar spectrum are explained by a “reversing layer”. Cecilia Payne had
this model in mind when she plotted her Saha-Boltzmann population curves. She thought that
her curves described the local density of the line-causing atoms and ions within stellar reversing
layers.

Tlayer

surface

T

Figure 12: The Schuster-Schwarzschild or reversing-layer model. The stellar surface radiates an inten-
sity given by By (Tyurface).- The shell around the surface only affects this radiation at the wavelengths
where atoms provide a bound-bound transition between two discrete energy levels. These spectral line
transitions cause attenuation 7x. The layer has temperature Ti.ye. and gives a thermal contribution
By (Thayer) [1 — exp(—7»)] as in Eq. (11).

Schuster-Schwarzschild model. The basic assumptions are that the continuous radiation,
without spectral lines, is emitted by the stellar surface and irradiates a separate layer with the
intensity

I)\(O) = B)\<Tsurfacc)7 (12)

and that this layer sits as a shell around the star and causes attenuation and local emission only
at the wavelengths of spectral lines. Thus, the shell is thought to be made up exclusively by
line-causing atoms or ions.
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The star is optically thick (any star is optically thick!) so that its surface radiates with the
7 > 1 solution Iy = B)(Tsurtace) Of (11), but the shell may be optically thin or thick at the
line wavelength depending on the atom concentration. The line-causing atoms in the shell have
temperature Tjayer so that the local production of radiation in the layer at the line wavelengths
is given by Bj(Tiayer) AT(z). The emergent radiation at the line wavelengths is then given by
(11) and (12) as:

I = BA(Tsurface) e ™+ B)\(Tlayer) (1 - e_n) . (13)

Voigt profile. The opaqueness 7 in (13) has gotten an index A because it varies over the
spectral line. When atoms absorb or emit a photon at the energy at which the valence electron
may jump between two bound energy levels (bound electron orbits), the effect is not limited
to an infinitely sharp delta function at A with he/A = x;.s — Xt but it is a little bit spread
out in wavelength. An obvious cause for such “line broadening” consists of the Doppler shifts
given by individual atoms due to their thermal motions. Other broadening is due to Coulomb
interactions with neighboring particles. This broadening distribution is described by

T(u) = 7(0) V(a,u) (14)

where V' is called the Voigt function and u measures the wavelength separation AX = XA — A(0)
from the center of the line at A = A(0) in dimensionless units

u=ANAMp, (15)
where AAp is the “Doppler width” defined as

A)lp = %\/Qk:T/m (16)

with m the mass of the line-causing particles (for example iron with mp, ~ 56 myg ~ 9.3 x
10723 g). The parameter a in (14) measures the amount of Coulomb disturbances (called
“damping”). Stellar atmospheres typically have a ~ 0.01 — 0.5. The Voigt function V(a,u)
is defined as: ,

1 a /+Oo v dy. (17)
AXpVT T ) (u—1y)2 + a?

It represents the convolution (smearing) of a Gauss profile with a Lorentz profile and therefore
has a Gaussian shape close to line center (u = 0) due to the thermal Doppler shifts (“Doppler
core”) and extended Lorentzian wings due to disturbances by other particles (“damping wings”).
A reasonable approximation is obtained by taking the sum rather than the convolution of the
two profiles:

V(a,u)

V(a,u) ~ 4 a] . (18)

1
AXpy/7T [e NG
e Start the IDL Online Help by typing ? on the command line. Inspect the description of

the VOIGT (a,u) function. We might have programmed approximation (18), but since IDL
furnishes the real thing we will use that instead.

e Plot the Voigt function against uw from v = —10 to u = +10 for a = 0.1:

u=indgen(201)/10.-10. ; u=-10 to 10 in 0.1 steps
vau=u ; declare same-size array

a=0.1 ; damping parameter

for i=0,200 do vau(i)=VOIGT(a,abs(u(i))) ; taking abs corrects IDL errors
plot,u,vau,yrange=[0,1] ; yrange fixed to compare plots
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e Cursor back up and vary the value of a between a = 1 and a = 0.001 to see the effect of this
parameter. Also add ,/ylog (without setting yrange) to inspect the far wings of the profile.
Use approximation (18) to explain what you see.

Emergent line profiles. You are now able to compute and plot stellar spectral line profiles
by combining (13) with (14). Again use the dimensionless u units for the wavelength scale so
that you don’t have to evaluate the Doppler width AAp.

e Write an IDL sequence that computes Schuster-Schwarzschild line profiles. Take Tyyrface =
5700 K, Tjayer = 4200 K, a = 0.1, A = 5000 A. These values are good choices for the solar
photosphere as seen in the optical part of the spectrum. First plot a profile I against u for
7(0) = 1:

Ts=5700 ; solar surface temperature

T1=4200 ; solar T-min temperature = ‘reversing layer’
a=0.1 ; damping parameter

wav=5000.D-8 ; wavelength in cm

tau0=1 ; reversing layer thickness at line center
u=indgen(201)/10.-10. ; u = -10 to 10 in 0.1 steps

int=u ; declare array

for i=0,200 do begin

tau=tau0 * VOIGT(a,abs(u(i)))

int (1)=PLANCK(Ts,wav) * exp(-tau) + PLANCK(T1l,wav)*(1l.-exp(-tau))
endfor
plot,u,int

e Study the appearance of the line in the spectrum as a function of 7(0) over the range log 7(0) =
—2 to log 7(0) = 2. Example:

tau0=[0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]
for itau=0,8 do begin
for i=0,200 do begin
tau=tauO(itau) * VOIGT(a,abs(u(i)))
int (1)=PLANCK(Ts,wav) * exp(-tau) + PLANCK(T1,wav)*(1l.-exp(-tau))
endfor
oplot,u,int
endfor

How do you explain the profile shapes for 7(0) < 17

Why is there a low-intensity saturation limit for 7 > 17

Why do the line wings develop only for very large 7(0)?

Where do the wings end?

e For which values of 7(0) is the layer optically thin, respectively optically thick, at line center?
And at u = 57

Now study the dependence of these line profiles on wavelength by repeating the above for
A = 2000 A (ultraviolet) and A = 10000 A (near infrared). What sets the top value Icont
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and the limit value reached at line center by I(0)? Check these values by computing them
directly on the command line. What happens to these values at other wavelengths?

e Observed spectra that are measured in detector counts without absolute intensity calibration
(as in your Clea-Spec data gathering in Exercise 1) are usually scaled to the local continuum
intensity by plotting I/I.ont against wavelength. Do that for the above profiles at the same
three wavelengths:

for iwav=1,3 do begin
wav=(iwav~2+1)*1.D-5 ; wav = 2000, 5000, 10000 Angstrom
for itau=0,8 do begin
for i=0,200 do begin
tau=tauO(itau) * VOIGT(a,abs(u(i)))
int (1)=PLANCK(Ts,wav) * exp(-tau) + PLANCK(T1,wav)*(1l.-exp(-tau))
endfor
int=int/int (0) ; convert into relative intensity
if iwav eq 1 and itau eq O then plot,u,int
if iwav eq 1 and itau gt O then oplot,u,int

if iwav eq 2 then oplot,u,int,linestyle=1 ; dotted
if iwav eq 3 then oplot,u,int,linestyle=4 ; dash dot dot dot
endfor

endfor

e Explain the wavelength dependences in this plot.

3.4 The equivalent width of spectral lines

Your profile plots demonstrate that the growth of the absorption feature in the spectrum for
increasing 7(0) is faster for small 7(0) then when it “saturates” for larger 7(0). Minnaert and
coworkers introduced the equivalent width W) as a line-strength parameter to measure this
growth quantitively. It measures the integrated line depression in the normalized spectrum:

Icon - I
W)y = / }(A) X (19)
cont

so that its value is the same as the width of a rectangular piece of spectrum that blocks the
same amount of spectrum completely (Figure 13). We will express it here in the dimensionless
wavelength units w.

e In order to add such profile integration it becomes handy to turn the profile computation
into an IDL function PROFILE(a,taul,u):
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Figure 13: The equivalent width of a spectral line is the width of a rectangular piece of fully blocked
spectrum with the same spectral area as the integrated line depression.

function profile,a,taul,u
; return a Schuster-Schwarzschild profile
; input: a = damping parameter
; tau0 = SS layer thickness at line center
; u = wavelength array in Doppler units

; output: int = intensity array
Ts=5700
T1=4200
wav=5000.E-8
int=u
usize=SIZE(u) ; IDL SIZE returns array type and dimensions
for i=0,usize(1)-1 do begin
tau=tau0 * VOIGT(a,abs(u(i)))
int (1)=PLANCK(Ts,wav)*exp(-tau) + PLANCK(T1l,wav)*(l.-exp(-tau))
endfor
return,int
end

e Check your routine:

u=indgen(1001)/2.5-200. ; u = -200 to +200 in steps of 0.4
a=0.1

taul=1e2

int=profile(a,taul,u)

plot,u,int

e Continue by computing the equivalent width with the IDL TOTAL function (check it out in
the Online Help):

reldepth=(int (0)-int)/int (0) ; line depth in relative units
plot,u,reldepth
eqw=total(reldepth)*0.4 ; integral = TOTAL times interval

print,eqw

The wide range of u specified above is needed to fully accommodate the extended line wings
that develop at large 7(0), otherwise int (0) will not equal I.ont. However, the sampling should
be finely spaced around line center to get the proper summation for narrow lines at small 7(0).

34



Spectral line codes therefore often use equidistant wavelength spacing over the Doppler core but
logarithmic wavelength spacing in the damping wings.
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Figure 14: Empirical curve of growth for solar Fel and Til lines. Taken from Mihalas (1970) who took
it from Wright (1948). Wright measured the equivalent widths of 700 lines in the Utrecht Atlas. The
quantity Xy along the x axis scales with the product of the transition probability and the population
density of the lower level of each line. The populations were computed from the Saha-Boltzmann laws as
in Exercise 2. The transition probabilities were measured in the laboratory. The normalization of W by
A removes the A-dependence of the Doppler width defined by (16).

3.5 The curve of growth

The idea behind the equivalent width was obviously that the amount of spectral blocking should
be a direct measure of the number of atoms in the reversing layer. They should set the opaqueness
7(0) of the layer. Your profile plots illustrate that the profile growth is only linear with 7(0) for
7(0) < 1. The “curve of growth” describes the full dependence: the growth of the line strength
with the line-causing particle density. Figure 14 shows an observed example.

e Compute and plot a curve of growth by plotting log W) against log 7(0):

tau0=10"(indgen(61)/10.-2.) ; 107-2 to 1074, 0.1 steps in the log
eqw=tau0 ; same size array
for i=0,60 do begin
int=profile(a,tau0(i),u)
reldepth=(int (0)-int)/int (0)
eqw(i)=total(reldepth)*0.4
endfor
plot,taul,eqw,xtitle="taul’,ytitle=’equivalent width’,/xlog,/ylog
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Explain what happens in the three different parts.
The first part has slope 1:1, the third part has slope 1:2 in this log-log plot. Why?

Which parameter controls the location of the onset of the third part? Give a rough estimate
of its value for solar iron lines through comparison with Figure 14.

Final question: of which parameter should you raise the numerical value in order to produce
emission lines instead of absorption lines? Change it accordingly and rerun your programs
to produce emission profiles and an emission-line curve of growth. Avoid plotting negative
W values logarithmically by:
plot,tau0,abs(eqw),$
xtitle=’taul’,ytitle=’abs(equivalent width)’,/xlog,/ylog
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Epilogue

In these three exercises “Stellar Spectra A” you have quickly gone through half a century of
stellar spectroscopy (the first half of the twentieth century), ending with a model of spectral line
formation that roughly explains the strengths and shapes of solar line profiles. Combination of
this model with Saha-Boltzmann routines as in Exercise 2 explains stellar spectra throughout
the Hertzsprung-Russell diagram. However, the model is very simple. Its two major deficiencies
are:

— use of the single-layer Schuster-Schwarschild description (Exercise 3).

It is obviously unrealistic to stick all line-causing particles together in a separate layer. The
gas in a stellar atmosphere is well mixed; the gas particles contribute to local absorption
and emission with continuum-causing processes and line-causing processes at the same time.
A much better description is therefore to have say a hundred layers instead of a single one,
each with its own 7¢(i) for the continuum and additional 7!(i) for the spectral line. If the
temperature 7T'(4) is then set to smoothly decline outwards, a fairly realistic model of a stellar
atmosphere results.

Setting the ratio 7!/7¢ constant for all 4 would make this many-layer model a “Milne-
Eddington” atmosphere, a much better description than the Schuster-Schwarzschild one.

Computing 7¢(i) and 7'() in detail from the Saha-Boltzmann laws would make it an “LTE
model atmosphere”, where the “Local” in LTE = Local Thermodynamic Equilibrium alludes
to using the local temperature within a stratified atmosphere in the TE laws. Such local-
equilibrium modeling has been used for stellar abundance determination throughout the
second half of the twentieth century. It is treated in exercises “Stellar Spectra B: LTE line
formation”.

— use of the TE partitioning laws (Exercises 2 and 3).

We have assumed that the temperature defines both the particle populations (Saha and
Boltzmann laws; Exercise 2) and the production of radiation (Planck law; Exercise 3). These
TE laws are accurate in the stellar interior and hold reasonably well in the deeper parts of a
stellar atmosphere, but not in the outer parts. For example, they do not hold at all in the
solar corona. Its high temperature (T, ~ 2 x 10° K) and low density (N, ~ 105 cm~3) cause
ionization to very high stages but without reaching thermodynamical equilibrium because
the X-ray radiation from the ions escapes directly from the corona and represents a limiting
energy loss. As a result, the production of coronal radiation falls very far below the coronal
Planck function, and the ion populations are far below the Saha prediction.

The TE laws hold much better for the stellar photospheres from which the visible radiation
escapes. Although that radiation leak contributes most of the total stellar energy loss, it
represents only a tiny loss in comparison to the local photospheric thermal energy content.
LTE is therefore a reasonable assumption for many photospheric lines and continua — but by
no means for all and certainly not for chromospheric lines such as Ca*K and He in the solar
spectrum. Exercises “Stellar Spectra C: NLTE line formation” treat techniques appropriate
to those.
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