Keith Rebinson




Patrick Moore’s Practical Astronomy Series




Other Titles in This Series

Navigating the Night Sky
How to Identify the Stars and Constellations
Guilherme de Almeida

Observing and Measuring Visual Double Stars
Bob Argyle (Ed.)

Observing Meteors, Comets, Supernovae and other
transient Phenomena
Neil Bone

Human Vision and The Night Sky
How to Improve Your Observing Skills
Michael P. Borgia

How to Photograph the Moon and Planets with Your
Digital Camera
Tony Buick

Practical Astrophotography
Jeffrey R. Charles

Pattern Asterisms
A New Way to Chart the Stars
John Chiravalle

Deep Sky Observing
The Astronomical Tourist
Steve R. Coe

Visual Astronomy in the Suburbs
A Guide to Spectacular Viewing
Antony Cooke

Visual Astronomy Under Dark Skies
A New Approach to Observing Deep Space
Antony Cooke

Real Astronomy with Small Telescopes
Step-by-Step Activities for Discovery
Michael K. Gainer

The Practical Astronomer’s Deep-sky Companion
Jess K. Gilmour

Observing Variable Stars
Gerry A. Good

Observer’s Guide to Stellar Evolution

The Birth, Life and Death of Stars

Mike Inglis

Field Guide to the Deep Sky Objects

Mike Inglis

Astronomy of the Milky Way

The Observer’s Guide to the Southern/Northern Sky
Parts 1 and 2 hardcover set

Mike Inglis

Astronomy of the Milky Way

Part 1: Observer’s Guide to the Northern Sky
Mike Inglis

Astronomy of the Milky Way

Part 2: Observer’s Guide to the Southern Sky
Mike Inglis

Observing Comets

Nick James and Gerald North

Telescopes and Techniques
An Introduction to Practical Astronomy
Chris Kitchin

Seeing Stars
The Night Sky Through Small Telescopes
Chris Kitchin and Robert W. Forrest

Photo-guide to the Constellations

A Self-Teaching Guide to Finding Your Way Around
the Heavens

Chris Kitchin

Solar Observing Techniques
Chris Kitchin

How to Observe the Sun Safely
Lee Macdonald

The Sun in Eclipse
Sir Patrick Moore and Michael Maunder

Transit
When Planets Cross the Sun
Sir Patrick Moore and Michael Maunder

Light Pollution
Responses and Remedies
Bob Mizon

Astronomical Equipment for Amateurs
Martin Mobberley

The New Amateur Astronomer
Martin Mobberley

Lunar and Planetary Webcam User’s Guide
Martin Mobberley

Choosing and Using a Schmidt-Cassegrain Telescope
A Guide to Commercial SCT’s and Maksutovs
Rod Mollise

The Urban Astronomer’s Guide
A Walking Tour of the Cosmos for City Sky Watchers
Rod Mollise

Astronomy with a Home Computer
Neale Monks

More Small Astronomical Observatories
Sir Patrick Moore (Ed.)

The Observer’s Year
366 Nights in the Universe
Sir Patrick Moore (Ed.)

Care of Astronomical Telescopes and Accessories

A Manual for the Astronomical Observer and Amateur
Telescope Maker

M. Barlow Pepin

The Deep-Sky Observer’s Year

A Guide to Observing Deep-Sky Objects Throughout
the Year

Grant Privett and Paul Parsons

Software and Data for Practical Astronomers
The Best of the Internet
David Ratledge

Digital Astrophotography: The State of the Art
David Ratledge (Ed.)

CCD Astrophotography: High-Quality Imaging from
the Suburbs

Adam Stuart

The NexStar User’s Guide
Michael Swanson

Astronomy with Small Telescopes

Up to 5-inch, 125 mm

Stephen F. Tonkin (Ed.)

AstroFAQs

Questions Amateur Astronomers Frequently Ask
Stephen F. Tonkin

Binocular Astronomy

Stephen F. Tonkin

Practical Amateur Spectroscopy

Stephen F. Tonkin (Ed.)

Amateur Telescope Making

Stephen F. Tonkin (Ed.)

Using the Meade ETX

100 Objects You Can Really See with the Mighty ETX
Mike Weasner

Observing the Moon
Peter T. Wlasuk



Spectroscopy:
The Key to

the Sty/

Reading the Lines in Stellar Spectra

|

[l

Keith Robinson B.A., Ph.D., FR.A.S.

With 78 Figures

@ Springer



Keith Robinson

Royal Astronomical Society, UK
4 Bedford Place

Scotforth, Lancaster, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006930106
Patrick Moore’s Practical Astronomy Series ISSN 1617-7185

ISBN-10: 0-387-36786-1 eISBN-10: 0-387-68288-0
ISBN-13: 978-0-387-36786-6 eISBN-13: 978-0-387-68288-4

Printed on acid-free paper
© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Design and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

987654321

Springer Science+Business Media
springer.com



Acknowledgements

My grateful thanks go to Dr. Harry Blom and all at Springer, New York, for their help
and enthusiastic support during the writing of the book. Many thanks are also due
to John Watson, particularly for his enthusiasm over the original idea for the book.
Finally, my heartfelt gratitude (and sympathy) goes to my wife Elizabeth for reading
the manuscript and offering many helpful comments and suggestions.

Diagrams

All diagrams were prepared by the author.



Contents

Introduction .......... . ... xi
Spectroscopy—A New Golden Age for Amateur Astronomy ............... 1
The Basic Stuff—Light Radiationand Atoms . .......................... 5
Light .o 5
Electromagnetic Radiation . .......... ..o i 11
ATOIMIS . ot e 19
SUMMATY . . ottt e e et e et 21
Behind the Lines—The Magnificent Energy Level Structure of an Atom . . . . .. 23
Energy Levels. . ... oo 23
Electron Transitions . .. ..ottt e 26
It All Comes Down to the (Quantum) Numbers .. ................o.... 31
The Rules of the Game—SelectionRules . . ............. ... ... ..., 34
Order from Chaos—Spectral Series ... ........coo i, 35
Dancing Electrons—It Takes Two (or More) to Tango .. ................... 38
Jons . 41
A Final but Very Important Note . ... .. .ooot it i 42
SUMMATY . . ottt ettt e ettt e et e 42
Our Old Friend the Doppler Effect ......... ... ... ... ... i, 45
Waves and MOVEMENt . . .« .o vttt ettt et 45
How It Works . . ..o 46
The Relativistic Doppler Shift. ......... .. ... i i 47
A Very Important Point .. ... i 48
SUMMALY . . ot e e 50
When Is a Spectral Line Not a Spectral Line? ........................... 51
Line Profiles . . . ...ttt e 51
Equivalent Width . .. ... . e 52
Populations of AtomsS . . . .. ..ottt 54
Shivering Energy Levels. .. ... ..o 55
Enter the Doppler Effect. .. ... ... .. i 57
Turbulence .. ... oo e 60
Piling the Pressure On. ... ..ottt e e 61
ConvolULIONS . « « .. vttt e 61

il



u_viii} Contents

How BroadIsaLine Profile?......... .. ... .. ... 63
SUMMATIY . . ot e e e e et e e 68
Stellar Spectra and That Famous Mnemonic. ........................... 69
Stellar Atmospheres . .. ...ttt e 69
Continuous AbSOrption . ........c.oiuiii i e 70
Line ADSOTPtion . .. .ottt e 72
The Spectral Sequence . . ... ... i 75
Line Broadening . . ... ...ttt e 78
Spectral Snapshots . . ...t e 79
A Word or Two About the Herzsprung—Russell Diagram................... 80
SUMMATY. .o e 81
Cool but not Smooth—The Molecular Spectraof Red Stars . . .............. 83
Stellar Atmosphere Versus the ChemistryLab ........................... 84
The Things That Molecules Do. ... ...ttt e 84
SUMMATIY . . oot e e e e et e 91
Glows in the Dark—FEmission Linesand Nebulae . . . ..................... 93
What Comes Down Must First GoUp ... .. ..ot 93
Recombination . ....... ... i 95
Photon Degradingand Recycling . . ........... ... ... i, 96
Thickand Thin Nebulae . . . ... e 97
Yet More Photon Recycling—Fluorescence. .. ..., 100
Forbidden Radiation............ .. o i 100
TheEdgeofaNebula .. ..... ... i 102
SUMMATY. .o 102
Glowing Vortices—Accretion Disks . .. ....... ... ... ... oL 105
Astrophysical Modelling . . ........... i 105
Anatomy of an Accretion Disk ... ... .. o i 106
Buildingthe Model . . .. ... . 107
ABetter Model ... ... i 113
Thinking Up an Even Better Model ....... ... .. .. .. it 115
SUMMATY. .o 117
The P Cygni Profileand Friends ................. ... ... . ... ..., 119
The Classic P Cygni Profile . .. ... ..o i e 119
Wind Outflow Geometry . . ...ttt 120
P Cygni Profiles from Cool Stars. . ....... ..o, 121
A P Cygni Profile Mystery—Symbiotic Stars .. .......... ..., 122
SUMMATY. .o 125
Spectral Magnetism—The Zeeman Effect . . .............. ... ... ... ... 127
How Strong Isa Magnetic Field?. . ...... ... ... oo i, 127
More on Electrons in AtOmS . . .« vt e ettt 128
MOMENTUM . . . oot e 128



Contents Lix )

The Wonderful World of x yz. ... .o oo e 130
Enter the Magnetic Field. ......... ... .. i 131
Electron Transitions in a MagneticField .............. ... . ... ... .. 134
Looking Straight Down the MagneticField ............. ... ... ...... 136
How Wide Do the Lines Get Split? . ... ... ... i 138
Complex AtOMS . . . vttt ettt e 139
Very Strong MagneticFields. . ........ ... ..o o i i 139
SUMMATY . ottt e e et it 140
‘How Much Gold in Them There Stars?—The Curve of Growth . ........... 141
ADUNAANCES . .« . vttt et e 141
A Laboratory EXperiment . . .. ..ottt 142
ABitof Theory . .. .ot e 143
Another Bitof Theory. ... ..ot e 145
Determining Abundances . . . .......oouuittinn i 147
Summary. .. ... 148
Conclusion . ...... ... i 149
Appendix A—Powersof Ten .. ........ ..ot 151
Appendix B—Constantsand Formulae . .. .......... ... ... ... ... ..... 155
Physical ConStants . . ... ....ouu ittt it 155
Astronomical Constants . ...ttt 156
Formulae. .. ... e 156



Introduction

Recently, I attended my usual local astronomy club meeting; our speaker was a local
amateur who talked about CCD astronomy. Listening to his talk it seemed to me that
here was the very guy for whom I'd written this book. He’d started out by doing CCD
photography and had produced images that most of us in the audience could only
envy. Later he’d moved onto variable star CCD photometry; it was clear that he wanted
to combine his hobby with doing scientifically useful observations. Finally, he said
that his most recent adventure was to get into CCD spectroscopy, at this point his talk
took on a significantly elevated sense of importance. I asked him about the kind of
spectral resolution which amateurs could achieve and he replied enthusiastically that
very soon, sub-angstrom resolution would be fairly normal. I admit I was somewhat
relieved, because it meant that much of what I’ve written in this book would not be
merely of academic interest.

My own interest in astronomy started in the 1960s; I was just a kid and couldn’t
get enough of the stuff, but there were two areas which I seemed to avoid like the
plague. One of these areas was radio astronomy; in those days it seemed to be more
to do with electronics than stars and of course we didn’t have the wonderful radio
images of today, just wiggly lines on a piece of chart recorder paper. The other area to
be avoided was spectroscopy; the physics involved seemed just too advanced. I knew
that spectral lines told us about different chemical elements in stars and that red-
or blue-shifted lines were caused by the motion of astronomical bodies but that was
about it. In any case, spectroscopy was definitely not on the observing agenda of most
amateur astronomers.

Technology has changed all that; now amateur astronomers can use CCD cameras
together with backyard spectroscopes to do astronomical spectroscopy. Unfortunately,
the physics hasn’t changed and to be honest, much of it isn’t the kind of physics you’re
likely to do in high school. Virtually all books on astronomical spectroscopy are
textbooks which as they say ‘don’t take prisoners’; they’re the kind of books which
wouldn’t even be used by most undergraduate astronomy students. As for books on
spectroscopy aimed at amateur astronomers, aside from Stephen Tonkin’s Practical
Amateur Spectroscopy also published by Springer, they’re pretty thin on the ground.
A.D. Thackeray wrote a semi-popular book Astronomical Spectroscopy back in 1961
but this is long out of print.

Tonkin’s book is the first of I hope many in this new area of amateur astronomical
research and as its title suggests, it is a practical book. There clearly is a need for a theory
book on astronomical spectroscopy which doesn’t expect the reader to be a science
graduate and I hope this book will at least make a start in fulfilling that need. This
is a book about physical processes and physics processes which make astronomical
spectra they way they are, so there’s quite a bit of physics in it. The only assumption
I’ve made here is that you did some physics in high school; even so, everything is done
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from the bottom up, so to speak. I've also used a bit of mathematics but only in the
form of simple ‘plug the numbers in’ equations which can easily be done with a pocket
calculator. These equations involve no more than knowing about powers of 10; and
if this presents a problem, have a read through Appendix A, which should get you up
to firing speed. Besides, giving you a feel for what’s going on, these simple equations
can be used to explore some areas of physics or spectroscopy; that’s why they are here.
Anything else that can be done without the math is done without the math and that
means most things.

There are one or two topics which may be unfamiliar and at first may seem a
bit involved, but take your time; read things through carefully, more than once if
necessary. My real hope is that this book will help you to understand more about
what’s going on in your spectra and most of all that you’ll quickly realise that there’s
far more to astronomical spectroscopy than just identifying lines in a spectrum. It
truly is fascinating stuff and I reckon, I can be pretty certain that you’ll want to know
more.

Keith Robinson
Lancaster, UK



Spectroscopy—A
New Golden Age
for Amateur
Astronomy

It was the year 1824. Gustav Kirchoff was born. He, together with Robert Bunsen was
to lay the foundations of modern spectroscopy. By perhaps an ‘inevitable’ coincidence,
it was in the following year that the French philosopher August Comte pronounced
that the chemical composition of the stars was knowledge that mankind would never
possess. This is the kind of (well known) story that is guaranteed to make every
scientist—astronomer or otherwise—smile. By the 1860s Father Angelo Secchi was
classifying stars according to their spectra and astronomical spectroscopy was born.

The latter part of the nineteenth century was also a golden era for amateur astron-
omy; though it has to be admitted that in those days amateur astronomers usually
had money and plenty of it. They were though, blessed with equipment—telescopes
and telescope ‘add-ons’ like bifilar micrometers which were very much on a par with
the kind of stuff used by the professionals of the time. The observatory inventory
of a typical ‘gentleman amateur astronomer’ would very likely also include a direct
vision spectroscope; this was an arrangement of small prisms and lenses fitted into
a tube, which could be inserted into the eyepiece end of the telescope. This enabled
the spectra of interesting stars to be examined and ‘commented on’; the fact is that
at this time not a great deal was understood about the mysterious lines in the spectra
of stars, except of course that some of them could be identified with certain chemical
elements. Sir William Huggins had even realised that small shifts observed in the lines
when compared to laboratory spectra, resulted from a star’s motion towards or away
from the Earth; but an explanation for exactly how the lines were formed and why
they appeared to form the patterns they did, had to wait until the early decades of the
twentieth century.

As the twentieth century itself progressed, that golden age of amateur astronomy
was gone too; professional astronomy was advancing at a furious pace both in terms of
equipment and theory. The amateurs, even the wealthy ones couldn’t hope to match in
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size telescopes like the 100 inch on Mt. Wilson (even if they had the money it wouldn’t
have fit into their backyards); but what was perhaps worse for the amateur was that
much of professional astronomy had evolved into astrophysics and this was very
much to do with the rising importance of spectroscopy in astronomy. Tremendous
progress in theoretical physics; most importantly quantum mechanics, had honed
observational spectroscopy into the most formidable analytical tool for professional
astronomers; but quantum mechanics itself in those days was causing problems even
for the big names in physics including Albert Einstein. It was weird stuff which did
not sit easy, if at all with ‘common sense’ everyday thinking about the world and if this
was how it was for professional scientists, then the amateur astronomers were bound
to get left behind.

However, the role of amateur astronomers didn’t get lost altogether thanks in no
small measure to the efforts of a few dedicated people and also to the fact that the
Universe is after all a pretty big place; big enough for the ‘small kids on the block’
to do their bit too. This became perhaps more apparent than anywhere else with the
discovery of more and more variable stars. What started out as a biggish handful
towards the end of the nineteenth century had grown to thousands by the mid-
twentieth century. There were just too many of them for the professional astronomers
to deal with so here the dedicated amateur was not only welcomed but positively
needed by the professionals. I reckon one of the best things that a seasoned astronomer,
professional or amateur can tell a beginner about, is the superb work done by amateur
variable star observers all over the world. Their observations don’t get filed away in
scrapbooks; they are used very gratefully by professionals and get published in research
papers all the time. The amateur’s role here is usually that of an unsung hero but the
knowledge that you're contributing to astronomical science is immensely fulfilling;
it’s great to feel needed.

Now however time has moved on again and technology has moved even faster but
it has become cheaper—very much cheaper. Once again the amateur who this time
doesn’t have to be as wealthy in real terms as his nineteenth century counterpart can
use equipment and indeed, thanks to the Internet, resources like databases, which
compare with those used by the professionals. He/she can’t compete in terms of
telescope size but the modern day dedicated amateur can develop what amounts to a
professional class observatory in miniature, and as I mentioned above, the Universe is
so big that there’s plenty of scope for anyone who wants to make themselves useful to
the astronomical community. This now includes doing spectroscopy; until recently a
more or less forgotten skill among amateurs but now growing again thanks to CCD’s
and ‘off the peg’ affordable spectroscopes. It’s probably a safe bet to say that in the very
near future, organisations like the American Association of Variable Star Observers
(AAVSO) will develop spectroscopy programs to tie into their variable star photometry
programs. Professional astronomers use photometry and spectroscopy side by side
so it surely follows that if amateurs do the same the value of their work will truly be
enormous.

There is perhaps one big snag though; the theory behind those spectral lines hasn’t
gone away; it involves all that weird quantum mechanics not to mention the mathe-
matics. This is probably a big turn off to many potential amateur spectroscopists. If
you were to ask amateur astronomers about which areas of astronomy they know and
understand least, spectroscopy would be sure to figure high up the table. Try reading a
professional astronomy research paper involving spectroscopy; it will certainly include
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alot of jargon and terminology; involve some pretty high-level (at least undergradu-
ate level) physics; and then there’s the maths! Virtually all the books on astronomical
spectroscopy are written at the undergraduate or postgraduate level; so as far as the
average amateur is concerned these books ‘don’t take prisoners’. If it were possible to
understand spectroscopy better without the need for a physics degree, I reckon more
would be drawn to this pioneering area of amateur astronomy. Even the experienced
amateur would surely benefit from having a better understanding as to why, for ex-
ample; some spectral lines were deeper or broader than others; why some were double
peaked; and why do the spectra of molecules look so complicated?

This is where I hope this book will at least make a start; to give you some under-
standing of the ‘whys’ and ‘hows’ of astronomical spectra. This book is about the
physical processes and the physics processes going on in stars and nebulae, which
make their spectra the way they are; it’s not a ‘train spotter’s guide’ to the lines in
stellar spectra. This means that we’ll be learning some physics—notably the weird
stuff; but it really is possible to gain a sound insight into quantum mechanics without
the mathematics and without a physics degree. As spectroscopists we only need to
know how quantum mechanics works within atoms and provided we’re prepared to
accept a few of the most basic ideas about quantum theory (even the professionals
have to do this), everything else will be seen to follow with breathtaking logic.

We won’t be needing any ‘heavy mathematics’ either, however, there are some very
simple ‘plug the numbers in’ equations, or formulae which can be used very easily to
work out very useful numbers. A good example is a simple formula which enables
us to convert the temperature of a gas into the speed of its atoms and this can then
be used to tell us how broad a spectral line is likely to be. Simple things like this,
which can be easily done with a pocket calculator can make amateur spectroscopy
much more interesting and rewarding. Simple calculations like this will of course be
explained very fully with step-by-step instructions on how to make sure you get the
right answers.

Once we’ve covered the basic material the rest of the book will introduce some of
the most important phenomena which are seen in astronomical spectra and explain
how they work. This will involve using astronomical objects like gaseous nebulae or
accretion disks as ‘spectral laboratories’ where we can see how the physics works. How-
ever, the spectra themselves are the real ‘stars’ rather than the astronomical objects;
so for example, when we use cool red stars to introduce molecular spectra, molecular
spectra is what that chapter is really all about rather than cool red stars.

Hopefully by the time you reach the end, you'll be able to understand more about
what’s going on in your spectra; they are after all potentially priceless data in this new
golden age of amateur astronomy.



The Basic
Stuff—Light
Radiation and

Atoms

A modern astronomical spectrum is basically a graph that plots intensity of radiation,
for example visible light, against wavelength or frequency. The fascinating character of
astronomical spectra is the result of light and other forms of electromagnetic radiation
interacting with matter—i.e. atoms and molecules. In this chapter, we’ll review some
basic things about light and electromagnetic radiation. We’ll take a look at the purest
spectrum; the so-called ‘black-body’ spectrum and how nineteenth-century physics
failed to explain it. The consequences of its solution, a ‘quick fix’ at the time turned
out to be profound to say the least and resulted in the whole science of spectroscopy
as we know it today. Then we’ll look at the structure of atoms and see how there were
problems here too, which could only be solved by introducing what at the time were
some pretty weird ideas.

Light has a dual personality and we need to be aware of and indeed comfortable with
both aspects of its character when we learn about spectra. The debate about the nature
of light was really hotting up in the nineteenth century when experiments seemed to
show that light was some form of wave motion rather like waves or ripples on water.
Isaac Newton had previously favoured the idea that light consisted of a stream of
energetic particles or corpuscles.
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Light Waves

In 1864, the Scottish theoretical physicist James Clerk Maxwell described the precise
mathematical relationship between electric fields and magnetic fields. These fairly
abstract concepts enable forces to act across empty space just as gravity does; Albert
Einstein even tried to explain them as some property of curved space-time just as he
had done so brilliantly with gravity itself. He failed however and to this day no one can
really say what an electric or a magnetic field actually is; physicists can only describe
how they work. They are though, familiar from everyday life; the Earth’s magnetic
field makes our compasses work and electric fields produce bolts of lightning. The
source of a simple electric field is electric charge, which is a basic property of matter;
thus in the space surrounding every electric charge, there is an electric field. Electric
charge comes in two forms, ‘positive’ and ‘negative’ and as they often say about people,
‘likes’ repel and ‘unlikes’ attract. Positive charges repel each other and so do negative
charges. In turn, positive charges attract negative ones. The force of attraction or
repulsion between electric charges is truly enormous but because of the dual nature
of electric charge, positive and negative electric charges effectively cancel each other
out. Most things on planet Earth including you and I are an even mixture of positive
and negative charge so we are effectively electrically neutral. The final thing to say
about electric fields here is that they have a direction in space; the field points in the
direction in which it would make a positive charge move.

A magnetic field also has a direction but there is no ‘magnetic charge’; instead there
is the concept of a magnetic pole. These always come in pairs; a north pole and a south
pole which are best thought of as being at the opposite ends of a bar magnet. Again,
rather like electric charges, like poles repel and unlike poles attract. The direction of

+
Positive

These two charges charge

These two charges
repel

attract

+
Positive
charge

Negative
charge

Electric Electric
field field

Negative
charge

Figure 2.1. Electric charge is a fundamental property of matter; two positive or two
negative charges will repel each other across empty space whereas a positive and a
negative charge will attract each other. The electric field surrounding an electric
charge has a direction, i.e. the direction in which a positive charge will move under
the acfion of the field.
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a magnetic field is the direction in which a fictitious isolated north pole would move
under its influence.

Maxwell showed that for electric and magnetic fields, as the song goes, ‘you can’t
have one without the other’ If an electric field changes; for example, as a result of
electric charge moving, a magnetic field is produced; electric charge moving along a
wire constitutes an electric current, which gives rise to a varying electric field, and this
in turn creates a magnetic field surrounding the wire. A changing magnetic field pro-
duces an electric field; a dynamo generates electricity as a result of a coil of wire being
made to turn in a surrounding magnetic field. This creates an electric field, which
drives an electric current along the wire. This dynamic interplay between electric and
magnetic fields turned out to be truly magical and produced the proverbial ‘rabbit’
that came out of Maxwell’s ‘hat’. Maxwell discovered that varying electric and mag-
netic fields could move together as waves through space. This happens when electric
charges, the source of an electric field, accelerate, i.e. change their velocity and one
very important example of an accelerating charge is one which vibrates or oscillates.
Oscillating electric charges then produce oscillating electric and magnetic fields which
in turn move outwards as waves. Maxwell was able to derive a very simple formula
for the speed of these electromagnetic waves and this speed came out to be equal to the
speed of light, which itself had been determined by this time. So Maxwell concluded
that light itself consists of electric and magnetic fields propagating together as waves,
i.e. electromagnetic waves. Maxwell thus provided the theory that vindicated what the
experiments of the time seemed to show—Ilight was made of electromagnetic waves.

We've all seen waves on the surface of water. A water wave consists of a succession of
ripples or crests and troughs that appear to spread out across the surface of the water.
One of the most important quantities associated with a wave like this is the distance
between two neighbouring crests or troughs. For a steady wave this distance doesn’t
change; it is called the wavelength and is always denoted by the Greek letter lambda’
or ‘A’

A light wave is not so easy to visualise; we can’t actually ‘see’ electric and magnetic
fields but their strengths and directions can be measured. If we were to measure the
strength and direction of say, the electric field at some point in a beam of light, we
would find first of all that its direction was the same as the direction along which the

Figure 2.2. A Wavelength
simple fransverse %

wave such as a
water wave. The
motion of every
point on the wave
is always at right
angles fo the
direction in which

Direction of

the wave is wave s
X motion

travelling. For a Direction of

steady wave, the motion of

wavelength is points on

constant. wave



W8 ) Spectroscopy—The Key to the Stars

Charge
oscillates
along this

line

Electric field

Magnetic field

Direction of wave

Figure 2.3. A crude representation of an eleciromagnetic wave; the plane of the
‘electric field wave' coincides with the line along which the charge oscillates. The
plane of the ‘magnetic wave' is at right angles to this and the direction in which the
wave travels is at right angles to both the electric and the magnetic fields. An
eleciromagnetic wave is thus emitted at right angles to the line of charge oscillation
and never along this line.

charge was oscillating and was always at right angles to the direction in which the light
wave was travelling. Physicists call this kind of wave a transverse wave. The electric
field at any point on the wave would first point in one direction, rise to a maximum
value then decline to zero. It would then increase, pointing in the opposite direction,
rise to a maximum again and finally decline back to zero. The associated magnetic
field would be doing the same thing and we would also find that the direction of the
magnetic field was at right angles to both the electric field and the direction in which
the wave was travelling.

A final point to note is that the electromagnetic wave ‘comes out’ at right angles to
the line along which the charge oscillates and never along the direction of this line;
this point will be significant later on in Chapter 11.

For a light wave, these processes happen very rapidly; the number of times the
electric or magnetic field oscillates in 1 s is another very important number associated
with a wave—the frequency, denoted by the Greek letter ‘nu’ or ‘v’. The wavelength
and frequency of a light wave are connected by a very simple formula:

C=V XA. (2.1)

Here c is the speed of light, i.e. the speed at which the electromagnetic wave travels
through space. The speed of light is constant so what this formula says is simply that
the shorter the wavelength, the higher the frequency and vice versa.

Another way of thinking about this is that if we make an electric charge oscillate,
electromagnetic waves will be produced. If the charge oscillates relatively slowly, i.e.
with a low frequency, then the frequency of the resulting waves will be low and the
wavelength long. Speed up the frequency of the oscillating charge and the frequency
of the electromagnetic waves increases together with a corresponding decrease in
wavelength. It takes more energy to make an electric charge oscillate more rapidly so
we’d expect the resulting electromagnetic waves to have more energy. In other words,
we expect waves with a shorter wavelength or higher frequency to have more energy
than those with a lower frequency.
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Figure 2.4. A slowly oscillating electric charge generates a wave of long
wavelength: a rapidly oscillating charge (higher frequency) generates a short
wavelength wave. The same kind of thing happens when you make waves on a
length of rope, one end of which is tied to a tree.

What kind of numbers are we in fact talking about here? The speed of light is
known to be very nearly equal to 300,000 km/s or 3 x 10°> km/s. (In case you need
a quick refresher on powers of 10, see Appendix A.) How you talk about wavelength
may depend on whether you're a physicist or an astronomer; physicists always like to
measure lengths in metres. Visible light has a very short wavelength indeed; of the
order of a few hundred nanometers. A nanometre is one thousand millionth of a metre
or 107 m. So, a physicist might speak of light having a wavelength of say 500 nm.
When speaking about visible light, astronomers use a different unit of distance called
the angstrom (named after Anders Jonas Angstrom who ironically was a physicist from
Sweden), which is represented by the symbol ‘A’. One angstrom equals 10~'° m, so
10 A make a nanometre. Thus, the wavelength of visible light is of the order of several
thousand angstroms. In a typical astronomical journal or research paper, a wavelength
would be written as 14686 or AA4000 to 5000 meaning 4686 A (468.6 nm) and ‘in the
range’ 4000 to 5000 A (400 to 500 nm), respectively. The human eye is most sensitive
to light with a wavelength of about 5000 A.

From Eq. (2.1), we can easily calculate the frequency of a 5000 A beam of light;
in other words, how rapidly the electric and magnetic fields are oscillating. First we
need to do things the physicist’s way and convert all distances to metres; 5000 A equals
5000 x 107! m which equals 5 x 1077 m. The speed of light converts from 3 x
10°> km/s to 3 x 10® m/s. The frequency is found by dividing the speed of light by
the wavelength, i.e. 3 x 10% divided by 5 x 1077. This gives 6 x 10'* which is the
number of times the electric and magnetic fields are oscillating each second. This is an
enormous number and in fact when talking about different parts of a spectrum, it’s
much more common to use wavelength, if for no other reason than wavelengths which
involve numbers like 5003 or 6563 become much more familiar than those like 6 x
104, Frequency does come up sometimes in the literature though and it is used quite a
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lot by physicists in particular, mainly because the energy associated with a light wave is
directly related to the frequency in a particularly simple way as we shall see later. So you
need to be aware of this, as well as how to convert frequencies to wavelengths. Another
quantity that is sometimes used is the reciprocal or one divided by the wavelength;
this is called the wave number because it gives the number of complete waves in a
standard distance. For this the wavelength has to be not in angstroms or nanometres
but in centimetres or metres; for example, 5000 Ais5 x 1075 cm and one divided by
this equals 2 x 10* or 20,000 waves/cm (try this on your pocket calculator). So the
units of wave number are ‘per cm’ (cm™!) or ‘per metre’ (m~!).

Light and Colour

Isaac Newton carried out experiments with prisms that showed that white light is a
combination of all the colours of the visible spectrum. Prisms in fact work because
the speed of light in glass is different for different colours; blue light travels more
slowly in glass than red light. The result is that a beam of blue light striking the
face of a prism at an oblique angle will have its path deflected as it enters the glass;
what’s more, this deflection is greater than would be the case for a beam of green
light. This in turn would be greater than that for yellow light and so on. A prism thus
separates out the various colours from a beam of white light; this process is called
dispersion.

This side of the
beam travels faster
than the other side

Air

Glass prism/'

This side of the beam
is slowed down; blue
more so than red

New wavefronts

Blue Red

Blue Red
The beam’s path is diverted; the blue
part more than the red part

Figure 2.5. VWhen a beam of white light passes from air info a denser optical
medium (e.g. a glass prism) it slows down; blue light slows more than red light. If the
beam hifs the glass surface af an angle other than 902, the blue part of the beam is
diverted more than the red part (other colours fall between these two extremes); the
white light is dispersed and forms a spectrum. The wavefronts are always af right
angles o the light beam'’s direction.
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Once the wave nature of light was established, it was realised that the colour of a
beam oflight is determined by its wavelength. Blue light has a shorter wavelength than
red light, and green and yellow light, etc. have wavelengths somewhere in between.
Because the wavelength can vary continuously from one end of the spectrum to the
other, there are clearly an infinite number of colours in the visible spectrum and not
just the seven identified by Newton. The visible spectrum runs from about A4000 at
the violet end to about 17000 at the red end. As mentioned above, the human eye is
most sensitive to light at about A5000 and this lies in the green part of the spectrum.

Electromagnetic waves can have wavelengths less than A4000 and greater than 17000.
These other wavelength regions beyond the violet and red ends of the visible spectrum
make up the whole electromagnetic spectrum or ‘e-m’ spectrum. Fig. 2.6 shows the
various regions of the electromagnetic spectrum and there are a couple of points
to note; the visible part of the spectrum is really a pretty narrow region of the whole
thing. Thereisalso of course no sharp dividingboundary between the different regions;
ultraviolet radiation merges into X-rays which in turn merge into gamma rays and so
on. If you're an amateur astronomer who does spectroscopy, you'll almost certainly be

Ho line 6563 A
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Violet Red
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Figure 2.6. The electromagnetic spectrum; the numerical scale at the bottom is not
'done to scale’.
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concerned exclusively with the visible part of the spectrum. However, it’s important
to realise that professional astronomers now do spectroscopy in just about every
region of the electromagnetic spectrum. So if you're browsing the literature, you're
certain to come across spectra taken in maybe the ultraviolet or infrared regions. Such
spectra look just like visible light spectra and indeed many processes and phenomena,
which affect visible light spectra, also apply to other parts of the e-m spectrum.
Their acquisition however requires methods and equipment (telescopes in space for
example), which at the present time lie for the most part (just?) beyond the amateur’s
grasp. We will talk about spectra in the non-visible region of the e-m spectrum when
it is relevant.

One thing you're certain to come across when reading articles or papersin journals is
the way that astronomers talk about wavelength when discussing different parts of the
e-m spectrum. Angstroms are still used for ultraviolet wavelengths and to some extent
longer wavelength X-rays; for short wavelength or ‘harder’ X-rays and gamma rays
you’re more likely to come across the term ‘electronvolt or eV’ which is not a wavelength
atall but a measure of energy. As we move into the infrared part of the electromagnetic
spectrum, angstroms give way to microns (short for micrometres), a micron being
one millionth of a metre. As wavelengths increase we enter the sub-millimetre region
and if we happen to be a radio astronomer we talk about wavelengths in centimetres
and metres.

The Beginning of Spectroscopy

Newton’s experiments with narrow beams of sunlight and prisms were carried out in
a darkened room and showed the familiar rainbow of colours which make up white
light. Newton saw no more detail in the solar spectrum than this which may in part
have been due to the quality of glass in the prisms he was using. In 1814 however,
Joseph von Fraunhofer using his own self-made prisms observed several hundred dark
lines crossing the Sun’s spectrum. He determined the wavelength of some of the lines
and labelled the most prominent ones from A to K. This notation is still used today in
relation to the solar spectrum and of course Fraunhofer has the honour of having the
lines in the spectrum of the Sun named after him. What of course he did not know
was what caused them.

One area of science that was in its heyday in the nineteenth century was chemistry.
In fact, it was the chemists rather than the physicists who were gathering evidence
that all matter was made of tiny particles called atoms. Their experiments showed that
certain substances could only react with a definite and fixed amount of some other
substance and the only way that this could be satisfactorily explained was by assuming
that the stuff in their test tubes was made of atoms which were bonded together
to make molecules. One of the great achievements of nineteenth-century chemistry
was the building up of the periodic table of the elements. Elements are substances,
which cannot be broken down into anything simpler by chemical processes; common
examples are iron and sulphur. Atoms of elements can chemically ‘bond’ together to
make molecules, which are the basic units of chemical compounds. By careful analysis,
chemists determined the correct order for elements to be placed in the periodic table;
for example, hydrogen was observed to react with other substances in smaller amounts
than that for any other element and so it was concluded that hydrogen was the lightest
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of all the elements and occupied position number one in the periodic table; next came
helium, lithium, beryllium, boron, carbon, etc. As we shall see, the physicists in turn
discovered the basic reason why the elements are ordered in the way they are. Whats
perhaps the most remarkable thing to come out of all of this is that there are only
92 naturally occurring elements starting with hydrogen and finishing with uranium
at position number 92.

If you enjoyed chemistry at high school (I did) you'll remember that one of the most
fascinating things was to ‘burn’ some chemical salt, for example, copper sulphate in
the flame of a Bunsen burner and note how the flame acquired often vivid hues of blue-
green or red. Still more interesting was to use a spectroscope to look at the spectrum of
light given off by vaporised chemical salts. The foundations of modern spectroscopy
were laid by Robert Bunsen (of Bunsen burner fame) and Gustav Kirchoff who carried
out experiments just like this in the mid-nineteenth century. They discovered that
chemical salts invariably produced spectra which consisted of a series of bright lines
(these were in fact images of the slit in their spectroscope; each one corresponding to
a different wavelength) set against a dark background. This was very much in contrast
to the continuous spectrum produced by sunlight. Whats more they realised that
each chemical produced its own characteristic set of lines and in fact identifying a
set of lines was a way of identifying a particular chemical element. This of course
would later prove to be the key to identifying different chemical elements in the
stars.

Besides the chemistry aspect of Bunsen and Kirchoffs work, Kirchoff himself pro-
duced three laws, now known as Kirchoff’s laws which were very much to do with the
physics of spectra. These laws stated that spectra came in three and only three types,
depending on the conditions in which they were produced:

* Continuous—basically a rainbow of colours. This kind of spectrum is produced by
a hot incandescent solid or a dense gas. A hot liquid such as molten iron would also
produce a continuous spectrum.

* Emission—isolated bright lines at different wavelengths seen against an otherwise
dark background. This kind of spectrum is produced by a hot incandescent thin or
low-density gas. The pattern of these emission lines is determined by the chemical
nature of the gas producing it.

¢ Absorption—a continuous spectrum with superimposed dark lines. This spectrum,
the sort produced by most stars results from relatively cool thin gas situated between
the source of the continuous spectrum and the observer. The pattern of dark lines
or absorption lines is again determined by the chemical nature of the intervening
cool gas.

Bunsen and Kirchoffs work thus provided the key to unlocking the chemical secrets
of the stars. In the latter part of the nineteenth century, astronomers were attach-
ing spectroscopes to telescopes; they examined, first visually and eventually photo-
graphically the spectra of stars. Most, though not all were seen to be absorption
spectra and by comparing the pattern of lines seen in stellar spectra with compar-
ison spectra produced in a laboratory, it was possible to determine those chemical
elements which were present in the outer layers of stars. It’s well known of course
that helium was discovered first in the spectrum of the Sun and most people asso-
ciate astronomical spectroscopy with the chemistry of the stars but we shall see that
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as spectroscopy developed in the twentieth century, it became a formidable tool for
investigating all manner of dynamic processes which take place in stars and stellar
systems.

Black-Body Radiation—The Perfect Spectrum

The work of Bunsen and Kirchoff showed that there are basically three types of spectra;
continuous, absorption and emission. A continuous spectrum shows radiation emit-
ted over a whole range of wavelengths; an absorption spectrum is similar but there
are gaps where radiation is missing and an emission spectrum consists mainly of gaps
with radiation visible at only certain discrete wavelengths. Clearly, the missing bits in
an absorption spectrum are caused by the chemical nature of whatever lies between
the original source of continuous emission and the observer and in turn the pattern of
lines in an emission spectrum is determined by the nature of the hot thin gas produc-
ing it. What about the continuous spectrum though? For example is the continuous
spectrum produced by a piece of hot iron the same as that produced by a piece of
hot titanium? How would we compare one continuous spectrum with another? After
all, there are no absorption lines to act as identifying finger prints. The answer lies in
the very nature of what a spectrum is; a spectrum is a graph, which shows how the
radiation emitted by something is distributed among the various wavelengths of the
electromagnetic spectrum. So what would distinguish one continuous spectrum from
another would be the shape of the spectrum graph itself. This is indeed found to be the
case; different substances when heated produce continuous spectra. The intensity of
emitted radiation over different wavelength ranges differs according to the substance
under investigation and what’s more, for a given substance, the shape of the contin-
uous spectrum can vary as the temperature rises. However, could there be some kind
of benchmark spectrum; a sort of idealised distribution of emitted radiation across
the various wavelengths?
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We normally think of temperature as something which is measured in degrees
Celsius or °C; some of us even still use degrees Fahrenheit. Astronomers and physicists
however use the Kelvin temperature scale; this scale runs in just the same way as the
Celsius scale except that zero degrees Kelvin (written as 0K not 0°K) lies at about
—273°C. This temperature is called absolute zero. So 0°C is equal to about 273 K;
100°C equals 373 K and so on.

Any object which is at any temperature above absolute zero is ‘warm’ and all warm
bodies emit electromagnetic radiation. Human beings are warm to the touch; we
emit infrared radiation. Stars are much hotter; they emit visible light. The central
star of a planetary nebula is very hot indeed and emits a lot of ultraviolet radiation.
Objects also absorb radiation; our skin warms up when exposed to sunlight; gas in
the Orion nebula absorbs ultraviolet radiation from nearby hot stars and emits visible
light as a result. How efficient are objects at absorbing and emitting radiation? This
was investigated by Kirchoff and he came to the conclusion that an object which was
good at absorbing radiation was also good at emitting radiation. In fact, he went one
step further and said that the absorbing efficiency of something (he called this its
absorptivity) and its emitting efficiency (its emissivity) were equal. He postulated the
idea of a body, which could with total efficiency; absorb all electromagnetic radiation
falling on it. Such a body would then with equal efficiency emit the maximum possible
amount of electromagnetic radiation at all wavelengths. Such a body he called a black
body and radiation emitted by such a body was called black-body radiation.

This is quite an abstract idea; physics textbooks usually describe a hollow cavity
which is heated from the outside and maintained at a constant temperature so that
the inside walls of the cavity emit electromagnetic radiation. The cavity has a tiny hole
in it so that any radiation from outside which enters the hole will be fully absorbed
by the hole. In turn, radiation from inside the cavity, which escapes via the hole will
do so in such a way as to mimic very accurately a black body. So radiation from the
hole closely resembles that from a perfect black body.

This is still somewhat abstract; i.e. we have a ‘hole’ to represent a perfectly radiating
body. Sometimes you can get a better feel for an idealised phenomenon by looking
at real situations, which are obviously not ideal, because of some complication. If
you understand what the result of the complication is, it’s easier to see what the
result would be if the complication were removed. Take for example the star Vega;
just suppose that Vega were in fact a perfect black-body radiator. In the early 1980s,
the Infrared Astronomical Satellite discovered that Vega was surrounded by a cloud of
dust. The evidence for this was what astronomers called an ‘infrared excess’ in Vega’s
spectrum. Some of the visible light from Vega is absorbed by the cool surrounding
dust; the result is that the dust warms up and re-radiates the absorbed light in recycled
form, namely as infrared radiation. So this complication—the dust, has removed part
of Vega’s hypothetical perfect black-body spectrum, recycled it and superimposed it
on another part of the spectrum. This leaves Vega with a non-black-body spectrum.

Of course even without the surrounding dust, Vega does not emit a pure black-body
spectrum but it illustrates the point that it is processes like this which cause objects
like stars to have spectra which deviate from the ideal. Deep inside a star, matter at
least on a local scale does radiate like a black body but there are processes going on
in the outer layers of stars, which degrade the spectrum from that of the ideal black
body. Having said all this though, it turns out that at least to a first approximation,
the continuous part of the spectra of many stars is not too different from that of a
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black body and in fact over restricted wavelength regions a star may actually radiate
as a perfect black body. The perfect black-body spectrum does exist in one place of
course—the cosmic microwave background radiation.

A black-body spectrum does not depend on the chemical nature of whatever is
producing it; it depends only on the object’s temperature. Late nineteenth-century
physicists performed experiments, which simulated as closely as possible the radiation
from ideal black bodies. They examined and recorded the spectra from such bodies
for a range of temperatures. Three things became clear:

¢ The hotter a body was, the more radiation it gave off. So if plotted on the same scale,
the black-body spectrum of a hotter body would be higher up the scale than that
from a cooler body.

* The curves were roughly ‘bell shaped” having low emission values for long wave-
lengths, rising to a maximum or peak value and then declining again towards short
wavelengths.

e The hotter the body was, the shorter the wavelength at which peak emission
occurred.

Fig. 2.8 shows a series of ideal black-body spectra for a range of temperatures. The
first and third points make sense because if we heat a body to a higher temperature,
we’re pumping more energy into it, so we’d expect more to be re-radiated. This simply
means that the radiated energy values are higher which results in a spectrum plot which
is higher up the intensity scale. Also, it’s well known that when an object is heated it
will eventually glow red and then orange and finally white with perhaps a blue tinge. So
as the body gets hotter, more and more shorter wavelength radiation is being emitted.
The bell shape of the black body curve itself was of course experimentally determined
but it became an issue of great importance at the end of the nineteenth century to
work out theoretically how this curve was produced.

Maximum intensity
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Quantum Theory Is Born

Explaining the ideal continuous spectrum—the black-body spectrum, proved to be
one of the biggest problems for physicists at the end of the nineteenth century. The
way they saw things was like this; the electromagnetic radiation emitted by a black
body is produced by oscillating electric charges near the body’s surface. By this time
it was generally agreed that electric charge was a fundamental part of the structure of
atoms and that the result of heating an object was to make the electric charges in its
atoms oscillate. As long as heat energy is pumped into the body, the oscillating charges
continue to vibrate and emit radiation. What’s more, they are capable of absorbing
any amount of energy from outside and in turn emitting any amount of energy. In
particular, charges which oscillate with very high frequency are capable of emitting
large amounts of radiation at the high frequency (i.e. short wavelength) end of the
spectrum. There is an additional factor too; just as there are vastly more numbers above
any given number, there are also vastly more frequencies, at which oscillating charges
can vibrate, above say the typical frequency of visible light. One result of this line of
thinking was that a theoretical plot of a black-body spectrum matches experiment very
well at the low frequency end of the spectrum but as we move towards the ultraviolet
and beyond, the plot goes through the roof. This breakdown of the theoretical model
became known as the ‘ultra violet catastrophe’.

Clearly something was wrong! The German physicist Wilhelm Wien (Wien is also
the German name for the Austrian capital Vienna and is pronounced ‘veen’) nearly
got things right but his theoretical plot didn’t quite match the experimental one
at the longer wavelength end. It was another German physicist, Max Planck who
introduced what even he himself regarded as a bit of a ‘fix’ Planck assumed that the
oscillating charges could not absorb or emit radiation continuously but only in whole
number multiples of a fundamental unit of radiation energy equal to & x v. Here v
is the frequency of the oscillating charge and / is a constant now known as Planck’s
constant. What Planck was saying was that instead of absorbing and emitting radiation
continuously, an oscillating charge does one of three things; it absorbs a small packet
or quantum of energy, it emits a small quantum of energy or it simply does nothing.

At first this doesn’t seem to fit in with our everyday experience of things; we switch
on a lamp and radiation in the form of visible light appears to stream from the lamp’s
tungsten filament as a continuous beam. This though is what we see with our crude
human senses. If we had the supersenses of a god, what we would see is this; the
lamp’s filament would contain a vast population of countless billions of charges. At
any given instant some of these charges would be absorbing quanta of energy (the
energy here comes from the electric current which heats up the filament), while
others were emitting quanta of radiation and still others would simply be sitting there
waiting to either absorb or emit. At some other instant, the scene would be similar,
with previously idle charges now absorbing or emitting and so on. Zoom out to our
normal crude way of seeing things and the whole thing appears as a continuous flow
of radiation. Another feature of Planck’s idea is that any given charge will not keep
absorbing quanta ad infinitum; sooner rather than later, it will re-emit quanta which it
hasabsorbed and this prevents infinite amounts of energy being accumulated and then
radiated particularly at high frequencies. It really is as simple as that; the ‘strange stuft’
is only happening at a tiny subatomic level and the nature of this strange behaviour is
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This worked—brilliantly! The sceptical Max Planck announced his results to the
equally sceptical Berlin Physical Society on 14 December 1900. This date is now seen
as marking the birth of quantum theory. One final point; while Planck suggested that
radiation is absorbed and emitted by a black body only in the form of quanta; he still
regarded the radiation itself to be in the form of simple continuous electromagnetic
waves. In 1905 however, Albert Einstein showed that to explain the photoelectric effect
(the light metre in your camera uses the photoelectric effect; incoming light falls on
a special sensor, which converts the energy of the light into an electric current, which
can be measured and used to tell you what exposure time to use) you need to assume
that light itself and indeed all forms of electromagnetic radiation exist in the form of
small packets or quanta. A quantum of electromagnetic radiation is called a photon.
There is even a direct connection between the energy of a photon and the wavelength
of its associated electromagnetic wave. This comes from Planck’s formula above and
simply says that the energy E of a photon is given by

E=hxv (2.2)
And because v = ¢/A from Eq. (2.1)
E=hxc/x (2.3)

Here, h is Planck’s constant again and c is the speed of light. Notice that it also fits
in with what we were saying at the beginning; that a shorter wavelength corresponds
to electromagnetic radiation of higher energy. This idea, that light itself comes not
so much in a continuous stream of electromagnetic waves but rather in what might
be described as ‘wave packets’ containing a single quantum of energy proved to be
of profound importance. This quantum aspect of light’s dual personality will play a
pivotal role in our story of spectroscopy. However, we now need to deal with the other
principal player in our story—matter.

We’ve talked so far about radiation from ahotbody resulting from oscillating electric
charges situated in the outer layers of the body. Even by the end of the nineteenth
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century it was known that all objects are made of atoms. The oscillating charges
themselves must of course form part of the structure of these atoms and the fact that
the charges can only absorb and emit radiation in the form of small packets or quanta
must be saying something pretty important and fundamental about the structure of
the atoms themselves.

In the early years of the nineteenth century, the chemist John Dalton from Cumbria
in England laid the foundation of the theory that all matter was made of tiny particles
called atoms. The term ‘atom” had in fact been coined by the ancient Greek philosopher
Democritus who formulated a purely philosophical theory that atoms existed. Dalton’s
conclusions however were based on many chemistry experiments which basically
showed that a specific amount of one substance such as carbon would only react with
a specific amount of another substance such as oxygen to produce carbon dioxide.
Dalton’s way of explaining this was that chemical elements are made of atoms and
what’s more atoms of different elements had different but very specific masses. Also,
all atoms of a given element were identical to each other.

By the end of the nineteenth century, it was realised that atoms were some kind
of mixture of positive and negative electric charge. Dominating the scene at this
time was the English physicist Joseph John Thomson who realised that so-called
‘cathode rays” were in fact tiny particles which carried a negative electric charge. He
determined the ratio of charge to mass for these particles and concluded that they
were far tinier than atoms. Thomson proposed that these cathode ray particles were in
fact a component of atoms themselves and even put forward a model for the structure
of atoms. Thomson’s model atom consisted of a uniform sphere of positive electric
charge in which were embedded just the right number of his negatively charged
particles to render the atom electrically neutral. This model subsequently became
known as the ‘plum pudding’ model. As for Thomson’s negatively charged particles,
they were electronsand Thomson was a little annoyed that it was others who coined the
name, which in fact is the ancient Greek name for the fossilised tree resin amber. This
had been used for spinning thread because fibres conveniently clung to it—they had
in fact become electrically charged as a result of friction associated with the spinning
motion.

Thomson had a student called Ernest Rutherford; a New Zealander with a reput-
edly brash personality. Rutherford was passionate about the recently discovered phe-
nomenon of radioactivity and it was he who coined the terms alpha, beta and gamma
radiation. Alpha radiation or alpha particles were known to be atoms of helium,
which were positively charged, and during the early years of the twentieth century,
Rutherford carried out a series of famous experiments in which alpha particles were
‘fired’ at extremely thin sheets of gold foil. The locations of emerging particles were
recorded on photographic plates placed behind the foil as illustrated in Fig. 2.9. Most
particles were seen to pass straight through the foil more or less unhindered which
suggested to Rutherford that atoms consisted mostly of empty space. This of course
was in stark contrast to Thomson’s uniform spheres of charge. More striking was the
fact that some particles were deflected by large angles, some even recoiling backwards.
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Clearly, Rutherford was smart enough to place photographic plates all around his
apparatus. This suggested to Rutherford that atoms consist of a central, positively
charged nucleus which contains almost all of the atom’s mass. The electrons existed in
aregion some distance from the nucleus. The simplest chemical element was known to
be hydrogen and Rutherford suggested that its nucleus was the fundamental positively
charged particle; he called it a proton.

This was the birth of the nuclear model of the atom which we are all familiar with
today. The actual charge carried by an electron was eventually determined by the
American physicist Robert Millikan in his famous ‘oil drop’ experiment. This enabled
the mass of the electron to be determined at about 9 x 103! kg; this made it 1/1837
of the mass of a hydrogen atom. It was eventually realised that the position of an
element in the periodic table was determined by the number of protons in the nuclei
of its atoms; hydrogen has just one, helium two, lithium three, etc. and this is also
known as the atomic number; often denoted by a capital ‘Z”. This also determines the
number of electrons in a neutral atom. It eventually became apparent that the mass of
most atoms was much greater than could be accounted for by simply assuming that
the nucleus was made entirely of protons. The deficit was made up by the discovery
in 1932 of the neutron; a particle of slightly higher mass than the proton but with
no electric charge. So the standard model of an atom is that of a nucleus which
consists of protons and a slightly varying number of neutrons (for a given element,
different numbers of neutrons result in different isotopes—for example, carbon 12 has
six protons and six neutrons in its nucleus whereas carbon 14 has six protons and eight
neutrons).

In this model then the nucleus contains almost all the mass of the atom and the
electrons which match the number of protons, ‘orbit’ the nucleus. Note the inverted
commas on the word ‘orbit’. The stylised pictures that we’ve all seen in kids’ science
books, depicting an atom as some kind of miniature solar system can be misleading.
Firstly, it was quickly realised that there was a problem with Rutherford’s model; if
an electron was some kind of particle carrying a negative electric charge, then the
fact that it was in orbit around the nucleus meant that it was in fact accelerating.
Most people think of acceleration as a change of speed such as what happens when
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you put your foot down in the car. Acceleration however also means a change of
direction; on a roundabout ride at a fun fair, you are accelerating even though your
speed may stay the same. Basically acceleration is what results from the application
of a force; you certainly feel some kind of force when you take a sharp bend in your
car. So if electrons are ‘orbiting’ the nucleus of an atom, they are doing so because
they are under the influence of the electric force of attraction between them and the
positively charged protons. They are therefore accelerating and as Maxwell had shown,
accelerating electric charges emit electromagnetic radiation. Rutherford’s ‘orbiting’
electrons should be constantly emitting radiation and losing energy in doing so. They
would then spiral very quickly into the atom’s nucleus; this obviously doesn’t happen
so we have a problem. The solution of this problem was quantum mechanics; it took
the efforts of many of the twentieth century’s greatest physicists and quite a few years
to fully develop the theory. Right from the start it became clear that things which
would have seemed ‘obvious’ and ‘common sense’ to a nineteenth-century physicist
would have to be abandoned in order to develop a theory which correctly explained
the behaviour of atoms. This behaviour included of course the nature of spectra and
the patterns and observed wavelengths of spectral lines. The first thing which had to
be assumed, in this case by the Danish physicist Neils Bohr in 1913, was that contrary
to what Maxwell’s theory said, electrons could exist in some kind of stable orbits in an
atom; indeed the word ‘orbit’ became replaced by the term ‘energy level. The bottom
line is; it’s okay to imagine electrons as tiny particles orbiting the nucleus of an atom
provided you don’t assume that they behave like tiny pool balls.

Light is an electromagnetic wave but it can also be thought of as a stream of particles
called photons.

The energy of a light wave or of a photon of wavelength X is given by  x ¢/A, where
¢ is the speed of light and h is Planck’s constant.

Visible light forms a narrow part of the electromagnetic spectrum.
The visible light spectrum runs from about 4000 A in the violet to about 7000 A in
the red.

* A continuous spectrum is produced by a hot dense gas-liquid or solid. The contin-
uous part of any spectrum is referred to as the continuum.

An emission spectrum is produced by a hot low-density gas and consists of a series
of bright (emission) lines whose wavelengths depend on the chemical make-up of
the gas.

An absorption spectrum is produced when a continuous spectrum shines through
cold thin gas to produce a series of dark (absorption) lines superimposed on the
continuum. Again the wavelengths of the lines are determined by the chemical
make-up of the intervening gas.

Ablackbody is an object that emits as much radiation as it absorbs at all wavelengths.
It is possible for a non-black body to emit as a black body over a restricted range of
wavelengths.
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e The distribution of energy as a function of wavelength depends on the body’s tem-
perature and takes the form of a ‘bell-shaped’ curve. This shape can only be explained
by assuming that radiation is absorbed and emitted in tiny packets called quanta.

* The wavelength of peak emission for a black body decreases with increasing tem-
perature; this is called Wien’s Law.

e All atoms consist of a tiny central nucleus, which contains almost all of the atom’s
mass.

* The nucleus consists of two types of particle; the positively charged proton and the
electrically neutral neutron.

¢ The nucleus is ‘orbited’ by negatively charged electrons, which have very low mass
but charge equal and opposite to that of a proton.



Behind the
Lines—The
Magnificent
Energy Level
Structure of
an Atom

Out in the ‘wild’ a free electron can do what it wants and have any amount of energy
that it wants. Within an atom though, things are very different; like a guy sent to
jail, the electron faces a tough regime governed by set rules which restrict freedom of
movement; though just as is sometimes the case with a prison, electrons can and do
escape.

In this chapter we’ll learn about the energy level structure of atoms and about the
ways in which electrons can move around these energy levels. Sometimes an electron
can leave an atom altogether while other free electrons can be captured by atoms.
These are the basic processes which make spectra the way they are and by the time you
reach the end of this chapter you'll understand where absorption lines and emission
lines come from. You’ll also learn why there is order in what at first seems like complete
chaos in the jumble of lines in many spectra.

A lot of ground is covered in this chapter so take it nice and easy, one piece at a
time.

Nineteenth-century physics says that if an electron orbits the nucleus of an atom, it will
rapidly lose energy and fall into the nucleus. Stable atoms exist however so something
is wrong! It must be possible for an electron to reside in some kind of ‘stable orbit’
within an atom because this is what everyday experience tells us is happening. The
real problem here is that no one even to this day knows exactly what an electron is,
just as no one knows exactly what an electric field is. What the physicists had to do
in the early decades of the twentieth century was to work out a set of principles and

2
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rules which show how these stable electron orbits are configured; this set of principles
forms a large and important part of quantum mechanics. Quantum mechanics is able
to describe in great detail and with great accuracy the behaviour of electrons in atoms
without even knowing exactly what electrons are; in this sense it’s actually not unlike
Newtonian mechanics which can predict the orbits of planets and the motion of balls
on a pool table without actually knowing that these things are made of atoms.

Unlike planets and pool balls, however, we have no ‘picture’ in our mind of what
electrons are or might be like. In the long run it probably does no harm to think
of an electron as an incredibly tiny particle which carries a negative electric charge,
provided we don’t necessarily expect it to behave like a tiny pool ball. The special stable
orbits where the electrons move around the nucleus of an atom are determined by
the laws of quantum mechanics not Newtonian mechanics. They are uniquely defined
and are discreet and distinct from one another; an electron must move on one of
these orbits for an atom to be stable; any kind of motion ‘somewhere in between’ is
not allowed. Despite this, quantum mechanics can’t say exactly whereabouts on its
orbit an electron actually is; it can only say where it is most likely to be. So while
the location and shape of the orbits are clearly defined by quantum mechanics, the
uncertain motion of the electrons gives them a ‘fuzzy’ character. A couple of things
that do hark back to Newtonian mechanics are the fact that in many cases the stable
orbits are not circular. Just as planets move on orbits which are elliptical, electrons can
often be thought of as doing the same; the second thing is that while some electron
orbits are spherically distributed around the nucleus so there is no orbital plane as
such, many orbits do have a well-defined orbital plane or orientation and this as we’ll
see later has a very important role to play.

The size and shape of a stable electron orbit is determined by the energy of an
electron occupying the orbit; for this reason the words ‘orbit’ or even ‘stable orbit’
are not used; instead they are replaced by the term energy level. Every atom of every
element has a set of energy levels; they are there even if they are not occupied by an
electron. They often provide a location where an electron can stay happily forever if
need be; very often though an electron will spend only a finite and often exceedingly
short amount of time in a particular energy level before it ‘decides to move on’. One
thing is certain; energy levels are very exclusive, they can only be occupied by one
electron at any one time. This is a very important rule from quantum mechanics
called the Pauli Exclusion principle and it makes each energy level in an atom unique.
We can think of an atom as consisting of a nucleus surrounded by a set of unique
energy levels each of which may or may not be occupied by an electron; if it is occupied
then the energy level itself determines the amount of energy that its occupying electron
possesses. The actual energies involved are largely determined by the nucleus of the
atom; in particular the number of protons (i.e. number of positive electric charges)
and hence by the actual element we are dealing with. Beyond this, the nucleus of an
atom plays no role in the formation of atomic spectra aside from one or two effects
which are subtle in the extreme and which needn’t concern the amateur spectroscopist,
nor indeed most professionals. The energy levels can also be affected by the presence
of other electrons within multi-electron atoms; electrons are negative electric charges
and they are bound to affect each other as they ‘buzz’ around within the atom; more
on this later.

One final thing to say here is that a free electron is said to have a ‘positive’ amount
of energy, whereas an electron which is confined to an atom has a ‘negative’ amount of
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Figure 3.1. Physicists define things so that an electron which is just outside of an
afom has 'zero’ energy. Energy levels can then be thought of as stable zones within
the energy well of the nucleus; the closer they get fo the nucleus the more ‘negative’
their energy.

energy. There’s nothing exotic about this—the electron still has energy when within
an atom but it has less energy than a free electron. This is because it is held by the
electric field of the atomic nucleus; think of it as a kind of ‘electric field well” with the
nucleus at the bottom. The further down this well the electron is, the lower its energy.
Physicists define things so that an electron just ‘hovering’ outside of an atom has ‘zero
energy’ and thus a free electron would in general have more energy than this ‘critical’
electron and an electron bound in an atom would have less. Also an electron within
an atom has less energy if it is closer to the nucleus and more energy if it is further
away.

Electron Energies

The standard unit of energy is called the joule. This is quite a large amount of energy,
enough for example to move a 1 kg bag of sugar 1 m; an electron in an atom has much
less energy than this. Imagine rigging up a simple electric circuit with a 1 V battery
and a couple of metal plates as shown in Fig. 3.2. When we switch on the battery, an
electric field exists between the metal plates and if we could place an electron next to
one of the plates, it would move under the influence of the electric field to the other
plate. In doing so it gains energy; the amount is very small—only 1.602 x 10~ J. This
tiny amount of energy is called one electronvolt or 1 eV for short. Electrons bound in
atoms have (negative) energies of the order of several electronvolts.
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1 eV =1.602 x 10719 joules
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Quantum mechanics shows that energy levels within atoms can have various three-
dimensional shapes and sizes but the important thing for spectroscopy is simply the
amount of energy associated with a given level. So it is much easier to depict energy
levels on a diagram as horizontal lines (or little shelves) with a scale running down the
left-hand side which gives the actual energies in electronvolts of the levels themselves.
An energy level which is closer to the nucleus and so has less energy will be below
a level of higher energy. The bottom line of this energy level diagram represents the
nucleus of the atom and a horizontal line at the top marks the level for an electron
which is just free; this of course corresponds to an energy of 0 eV. This ‘freedom line€’ is
usually shown with a hatched area above to depict the outside world of free electrons
and this zone is referred to as the continuum. Don’t however confuse this with the
continuum or continuous part of a spectrum.

The final point here is that in all atoms, the energy levels get closer together as they
get nearer to the continuum. This means that energy differences for adjacent levels
are not so great near the periphery of an atom but can be quite large near the nucleus.
The spacing of the energy levels is as you'd expect determined by quantum mechanics.

An electron in an atom can move from one energy level to another but to do this it
must either acquire energy from outside the atom to move to a level of higher energy
or lose energy to move to a level of lower energy. The process of an electron ‘moving
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house’ from one energy level to another is called an electron transition. For an electron
to move to a different energy level, that level must be empty of course and what’s more
there are certain rules which govern the electron’s ‘choice’ of destination levels even
when they are empty (more on this shortly). Basically though an upward transition
results from absorption of energy from outside and a downward transition causes loss
or emission of energy. Clearly, upward electron transitions are going to play a pivotal
role in the production of absorption spectra and conversely, downward transitions
will result in emission line spectra.

A transition (upward or downward) in which the electron remains within the atom
is often referred to as a bound—bound transition. There are a few other terms like this
which often appear in the literature; if an electron receives sufficient energy from
outside, it can escape from the atom altogether and become a ‘free’ electron. This
process of electrons escaping from atoms is called ionisation and a transition which
results in ionisation is called a bound—free transition. The free electron could at some
later time be captured by another atom; this process is called recombination and the
relevant electron transition is called a free—bound transition. Finally, our free electron
may remain free but receive a quantity of energy from its surroundings; the electron
now has more energy and so it has undergone a kind of transition called a free—free
transition.

In a bound—bound transition, the electron loses or gains energy and the amount gained
or lost is determined by the energy difference between the two energy levels involved in
the transition.

Why do we need to know this? Very often (though not always, as we’ll see later)
the energy absorbed or emitted by an electron undergoing a transition is in the form
of light; i.e. a photon and Planck’s formula gives us an easy way to convert energies
into wavelengths and vice versa. Remember Planck’s formula states that the energy E
associated with light of wavelength X is given by;

E=hxc/\ (3.1)
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Here h is Planck’s constant (6.626 x 107%*Js) and c is the speed of light (3 x 108 m/s).
To get a wavelength from a quantity of energy, we need to rearrange Planck’s formula
to read

L=hxc/E (3.2)

With E in electronvolts and using the above values for h and c¢ there’s a very simple
formula for converting electronvolts to angstroms; this turns out to be

wavelength in angstroms = 1.24033 x 10*/energy in electronvolts (3.3)

So for example, if the energy difference between two levels in an atom of hydrogen
were 1.89 eV, an electron transition between these two levels would result in either the
emission or the absorption (depending on whether the electron suffered a downward
or an upward transition respectively) of light at a wavelength of 1.24033 x 10* divided
by 1.89 which equals 6562.6 A (remember A is the symbol for angstroms). This is
almost equal to 6563 A a number which is well known to many amateur astronomers
as the wavelength of the hydrogen alpha or Hx line; light which is responsible for
the reddish colour of galactic nebulae like the Orion Nebula and the North American
Nebula.

One final and extremely important thing to say about bound-bound transitions is
this; an electron which drops to a lower energy level will lose energy and this energy
will be emitted as light of a specific wavelength. For the electron to be restored to
its original energy level, it must receive energy in the form of light of exactly the
same wavelength. This might seem obvious at first but suppose our electron were
to receive a bit more energy than that which it originally lost; this could be in the
form of light with a slightly shorter wavelength. Would the electron be restored to its
original energy level with a bit of energy to spare? The answer is no! The incoming
photon may move off in a different direction; this is called scattering but light of any
wavelength other than that which corresponds exactly to the energy involved in the
transition will have no effect on the electron with one exception; if the energy of the
incoming light is sufficient to remove the electron from the atom altogether, then
our electron will be set free, otherwise it will stay put. Bound-bound transitions thus
involve exact energies which translate into exact wavelengths which in turn translate
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into well-defined spectral lines. Setting electrons free on the other hand involves
dealings with the ‘outside world” and as long as there is sufficient energy to free the
electron, any amount of energy can be used. In fact as we would expect, the more
energy that is used to free the electron, the more energy it will have after it has been set
free.

Excitation

The absorption of energy from outside causing an electron to undergo an upward
transition to a higher energy level is called excitationand an atom which has undergone
such a transition is said to be in an excited state. The opposite process, not surprisingly
is called de-excitation. As described above, excitation by absorption of radiation is an
exact process—only light of the correct wavelength will do. However, there is another
way to achieve excitation; the atoms of a gas for example can be raised to an excited
state by simply heating the gas to a higher temperature. This process is called thermal
excitation; raising the temperature of the gas makes the gas atoms move around at
higher speeds. This results in more frequent collisions between atoms (‘collision’ is
a bit of a misnomer here; two atoms will actually have what might best be termed a
‘close encounter’; they will exchange energy—one atom will gain energy, the other
will lose and they will move apart). The result is that the collisional energy gained by
some of the atoms will be just the right amount to raise them to an excited state; i.e.
an electron will jump to a higher energy level. As we shall see later, thermal excitation
has very important consequences for stellar spectra.

An atom which is not in an excited state, i.e. none of its electrons are in a higher
than normal energy level, is said to be in the ground state.

lonisation

If an electron does receive sufficient energy from outside it will escape from the atom.
This process; a bound—free transition, is called ionisation and the atom as a result
becomes ionised and is then known as an ion. The incoming energy may be in the
form of a photon of sufficient energy to free an electron and this process is often
referred to as photoionisation. As with excitation, it’s also possible to ionise the atoms
of a gas by sufficient heating and this process is called thermal ionisation. As with
thermal excitation, thermal ionisation, as we shall see is of fundamental importance
in the formation of stellar spectra.

The simplest of all atoms, hydrogen (H) has just one electron, so in this case
ionisation can happen just once leaving a hydrogen ion. Element number two, helium
(He) has two electrons and it can become singly ionised and possibly doubly ionised.
Clearly more complex atoms can lose several electrons and become multiply ionised.
Astronomers have a very specific terminology for how many times an atom has become
ionised; Take for example iron whose chemical symbol is Fe; if the iron atom is still in
possession of all of its 26 electrons (any atom possessing all of its electrons is referred
as a neutral atom), then it is written as Fel; i.e. the chemical symbol followed by the
Roman numeral I. Iron which is singly ionised, i.e. has lost one electron, is written as
Fell and so on with Felll, FelV, etc. The spectra of some symbiotic stars show evidence
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of FeXIV, i.e. iron atoms which have lost 13 or half of their normal compliment of 26
electrons. Galactic nebulae like the Orion Nebula contain large amounts of ionised
hydrogen and so are often referred to as HII regions.

It clearly takes energy to ionise an atom and as with the energy involved in a bound-
bound transition, this energy is usually given in electronvolts or eV. The energy needed
to set free an electron from a given energy level in its parent atom is called the ionisation
potential for that particular energy level. Again using the simple formula (3.3), it’s easy
to convert an ionisation potential to a wavelength and this then gives the wavelength
of light which is needed to ionise an atom from that particular level. For example, the
ionisation potential for hydrogen (i.e. the energy needed to remove the electron from
the lowest energy level) is 13.598 eV. So if we divide 1.24033 x 10* by 13.598, we get
912.1 A; photons at this wavelength are in the ultraviolet part of the spectrum.

In multi-electron atoms, the outer electrons are less tightly bound to the atomic
nucleus. This is not just because they are further away from the nucleus but also be-
cause the inner electrons can ‘screen off” much of the electric charge of the nucleus.
The result is that relatively little energy is needed to remove them; hence the ionisa-
tion potentials are low. Inner electrons are generally much more tightly bound and so
the ionisation potentials are correspondingly higher. If astronomers detect evidence
of highly ionised multi-electron atoms in a spectrum, it’s a sure sign that the object
involved includes a source of high energy, i.e. very high temperatures or short wave-
length radiation. The single outer electron in a sodium (Na) atom has an ionisation
potential of only 5.139 eV and thus needs photons at 2413.6 A for ionisation to take
place, By contrast, it takes 47.286 eV or a 262.3 A photon to remove one of the inner
electrons.

The opposite process to ionisation is called recombination, where an atom captures
a free electron. Recombination plays a fundamental role, as we shall see later, in the
production of the emission line spectra of objects like galactic nebulae and planetary
nebulae.
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It All Comes Down to the

Every energy level in an atom is unique and is identified by its own unique code—a
set of four numbers which physicists call quantum numbers. The numbers have names
which in some cases are ‘borrowed’ from pre-quantum physics and you have to be a
bit careful not to read too much nineteenth-century physics into these names. The
four numbers are as follows:

* Principal quantum number—rn.

* Angular momentum quantum number—L/

* Magnetic quantum number—m (often written ).
e Spin quantum number—s (sometimes written ).

All of these numbers are simple whole numbers, sometimes including zero; there are
no fractions or decimals with the sole exception of the spin quantum number s which
is always equal to either +1/ or —1/5. The magnetic quantum number 1 is as you may
expect very much to do with external magnetic fields and has an important role to
play in certain astronomical spectra; we’ll have a lot to say about m in Chapter 11. The
terms angular momentum and spin come from pre-quantum physics; traditionally,
angular momentum is associated with rotation or the orbital motion of say a planet.
Here the angular momentum quantum number [ is also associated with the shape
of an energy level or the way it is distributed around the nucleus of the atom. Its
real importance to the astronomer doing spectroscopy is that its value contributes to
the actual energy associated with an energy level. The same thing applies to the spin
quantum number s; its value affects the actual energy of a given level.

Configuring the Energy Levels

The energy level structure of any atom consists of a series of principal or main levels,
each one identified by its principal quantum number n. These main levels basically
tell us how close in to the nucleus the electrons are; n has the values 1, 2, 3, 4, and
so on with the lower values identifying levels which are closer to the nucleus. So level
1 (n = 1) is closest to the nucleus, level 2 (n = 2) is the next furthest out and so on.
Each of these principal levels is itself divided into a series of sublevels. Each of these
sublevels keeps the same value for n but is identified by a different value of I. The
number of ‘I sublevels’ depends on the value of the principal quantum number # and
in fact is equal to # itself. So the n = 1 level is its own sublevel whereas level n = 2
divides into two sublevels, etc. The angular momentum quantum number / takes on
the values 0, 1, 2, etc. up to the value n—1. So for example the n = 3 level divides into
three sublevels identified by [ values of 0, 1 and 2.

So far we’ve got main (n) levels and (I) sublevels. Now each sublevel (I level) itself
divides into a series of sub-sublevels. Each of these is identified by the magnetic
quantum number . There is always an ‘m sub-sublevel” identified by m = 0; further
‘m levels’ are then identified by values of m equal to +1, —1, +2, —2, etc. up to +/
and 1. So for example, the I = 2 sublevel divides into five ‘m sub-sublevels’ with
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values of mequal to —2, —1, 0, +1, +2. Again, if / equals 0, it is its own single m level
with m also equal to 0.

Finally, each m sub-sublevel divides into two levels identified by the spin quantum
number s with s having the values +1/5 and —1/. Fig. 3.6 shows how this works for
the n = 3 level.

As mentioned above the principal quantum number’ # in effect tells us how close in
to the nucleus the level is; higher values of n1 correspond to levels which are further out.
The different I sublevels into which it divides tell us basically about the way the level is
distributed around the nucleus, i.e. its three-dimensional shape; the sublevel with the
highest value of I (i.e. when I = n — 1) is symmetrical about the nucleus, i.e. spherical.
This means that an electron in this level stays the same distance from the nucleus.
Lower values of I correspond to sublevels which are increasingly asymmetrical and
this causes an electron in such a level to spend more time closer to the nucleus. The
result is that lower / values correspond to levels of slightly lower energy; this has the
odd consequence that an electron in a sublevel with a higher value of n but with a
low value of I can actually get closer to the nucleus (and hence have lower energy)
than an electron in the next n level down, provided that electron has a high value
for I.

Each [ sublevel divides into a series of sub-sublevels identified by . Under normal
circumstances, these ‘m sub-sublevels’ all have the same energy for a given value of /.
Because they have the same energy, physicists call these sub-sublevels degenerate—they
are rather like dormant levels which are allowed to contain one electron each but which
are otherwise indistinguishable from one another. They become important when the
atom finds itself in the presence of an external magnetic field; the m sub-sublevels
then split off from each other, each having a slightly different energy to the others.
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We'll look at the effect of this in Chapter 11. The subdivision of the atomic energy
levels ends with an m sub-sublevel splitting into two, one with spin quantum number
s equal to +1/ and the other —1/. An electron with s = 41/ is often referred to as
being ‘spin up), the other being referred to as ‘spin down.

There is one very important exception to all of this; hydrogen, the simplest element
has m levels which are degenerate just as with atoms of other elements. However
for hydrogen, the [ levels are also degenerate; in other words the only things which
determine the energy of an electron in a hydrogen atom are the principal quantum
number # and the spin quantum number s.

Sothisishowthe energylevelsin everyatom are built up; the actual energyassociated
with each level depends largely on the number of protons in the nucleus, i.e. on which
element we are actually dealing with. For atoms near the beginning of the periodic
table, like hydrogen, helium, etc., the energy levels are for the most part empty but
as we move through the periodic table, the energy levels progressively get filled with
electrons. From what we have learned above, it’s easy to see how many electrons it
takes to fill each principal energy level. Take n = 1 first; [ has only one value, namely
0 and so does m; s can have a value of either +1/; or —1/. So for the n = 1 level only
two different sets of quantum numbers are possible; 1, 0, 0, +14and 1, 0,0, —1/ and
therefore this level can only accommodate two electrons.

For the n = 2 level, I can have values of 0 and 1; let’s take | = 0 first. In this case
m again only has the value 0 but s can have values +1/ and —1/, so there are two
electrons in the | = 0 sublevel. For [ = 1, m can now have values of —1, 0 and +1;
that makes three values and each of these can have a value of s again equal to 41/, or
—1/, making a total of six electrons all with ! values equal to 1. Adding this to the two
electrons with [ equal to 0, gives a grand total of eight electrons necessary to fill the
n = 2 level. The quantum numbers work out as follows:

n=2 1=0 m=0 s=41
s=-=1h
I=1 m=—1 s =41
s=-1h 8 electrons in all
m=20 s=41
s=-=1h
m=1 s=41
s+ =1k

An atom with the n = 1 and n = 2 levels filled is an atom of the inert gas which is used
for many of the advertising displays on our city streets—neon (Ne). In fact, when an
atom has a principal level filled with its compliment of electrons, it is said to have a
closed shell. See if you can work out how many electrons are needed to fill the n = 3
level; the answer is 18 (hint, look at Fig. 3.5).

Finally, there is another conventional way of labelling the I sublevels; alongside the
values 0, 1, 2, 3, 4 to identify the [ levels, the letters s, p, d, f, g are used. Thus, a level
with angular momentum quantum number ! equal to 0, is often referred to an ‘s level’;
be careful here not to confuse this with the spin quantum number s. Inturnan/ = 1
level is called a ‘p level” and so on. The origin of the letters s, p, d, f comes from early
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investigations of the spectrum of sodium (Na) and is not at all logical; One advantage
though is that instead of talking about say, the ‘n = 2, I = 1’ level, we can simply say
the 2p’ level or for the ‘n = 3,1 = 0’ level we can say the ‘3s’ level and so on. This way
of talking about energy levels is in fact standard practice.

The Rules of the Game—Selection

I said at the beginning that within an atom, an electron is subject to a tough regime of
strict rules which govern the way it can move around the energy levels. Of course in
heavier atoms (i.e. those which are further up in the periodic table), many of the energy
levels will be filled possibly more or less permanently so this in itself will inhibit which
levels a restless electron can go to. However, even if our electron lives in a hydrogen
atom it is still restricted in its choice of movement between energy levels. There is a set
of rules called selection rules which come from the laws of quantum mechanics which
tell our electron what it can and can’t do. Here’s the twist though; quantum mechanics
itself doesn’t actually lay down totally strict rules; it says that under certain conditions
in the subatomic world, some things are much more likely to happen than others so
in laying down the selection rules for electron transitions within atoms, it’s really just
saying that some bound-bound transitions are very likely to happen whereas others
are very unlikely to happen. This is a set of rules which is basically asking to be broken
and out there in the real Universe they do indeed get broken.
The selection rules for electron transitions between energy levels are as follows:

¢ The I quantum number must change by +1 or by —1.
* The spin quantum number s does not change.

The second rule says that an electron which starts off as spin up will remain a spin up
electron after the transition. It means for example that if our electron is spin up and
a possible transition would take it to a level whose I number differs by 1 (so the first
rule is obeyed) but that level already contains a spin up electron, then it can’t go there.
Another example would be a hydrogen atom with its electron in the 2s level (n = 2,
I = 0); this electron cannot drop down to the 1s level because it would violate the first
rule. An electron in this level is in a sense stuck and levels which are like this are called
‘metastable levels’; it can only ‘escape’ by being excited to a higher level from which it
could then drop to the 1s level—or it could break the rules!

So the selection rules are about bound—bound electron transitions which are proba-
ble and those which are (quite possibly highly) improbable. Probable transitions obey
the selection rules and are called permitted transitions and improbable ones which
break the selection rules are called forbidden transitions. If radiation (light) is emit-
ted as a result of a transition then it is referred to as either permitted radiation or
forbidden radiation depending on whether the transition is permitted or forbidden.
The selection rules do get broken and forbidden radiation is observed in astronomical
spectra.
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Order from Chaos—Speciral

A typical spectrum of a star consists of a continuous background called perhaps not
surprisingly the continuum (be careful not to confuse this with the ‘continuum’ which
represents the world of free electrons outside of an atom). In photographs this appears
as arainbow coloured strip (a shaded grey strip ifit’s an old photograph) and in a more
modern spectrum plot as a more or less smooth curve. The photographic spectrum
will be crossed by perhaps many dark lines called absorption lines which again in a
plot of the spectrum appear as sharp dips in the continuum. These absorption lines
are the result of upward bound—bound transitions in atoms which lie between us and
the source of the continuum. The bound-bound transitions involve light of specific
wavelengths which is why the absorption lines themselves have specific wavelengths
and of course these wavelengths tell us what amount of energy is involved in the
transition. Most importantly of all perhaps is the fact that lines from any element
organise themselves (according to the rules of quantum mechanics of course) into
individual groups called spectral series or also transition series.

Hydrogen

With hydrogen we have only one electron to worry about, so let’s worry about this
first and the first thing to think about is which energy level the electron starts from.
Logic suggests that we start with the electron in the ground state, i.e. the n = 1 level.
From here the electron can go to level 2, level 3, level 4, etc. Each of these transitions is
the result of absorbing photons of a very specific energy, i.e. wavelength, and together
they make what is known as a transition series. This particular transition series is called
the Lyman series and the photons which are needed to produce it are of pretty high
energy in the ultraviolet part of the spectrum. So we don’t get to see the Lyman series
of lines in the optical part of the spectrum. Alternatively, the same transition series
can result from downward transitions which end on level n = 1; this produces the
Lyman series of emission lines.

From the n = 2 level, upward transitions take the electron to level n = 3, 4, 5, etc.
and this give us a series of absorption lines in the optical part of the spectrum called the
Balmer series. This series of lines is so famous that just as with bright stars, the lines of
the Balmer series have names, though these are not very exciting. The transition from
n =2 to n =3 gives us the Ho line which is our old friend at 16563. The transition
n =2 to n =4 gives us the Hf line and so on. Upward transitions from the n =3
level give a series called the Paschen series in the infrared. Fig. 3.7 shows the energy
level diagram for hydrogen; the transition series are shown by arrowed lines running
between the relevant energy levels—upward pointing arrows are used for absorption
lines and downward pointing arrows are used for emission lines. More advanced
books and research papers etc. will very often give actual wavelengths alongside the
transition arrows or actual energies in electronvolts for the various energy levels on a
diagram like this, so it’s very straightforward to use these values to calculate what the
wavelength corresponding to a transition will be.
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Spectral lines arrange themselves into series like the Lyman and Balmer series for
hydrogen. The lines of any series always crowd together towards the short wavelength
end as shown in Fig. 3.8; this is a direct result of the closer spacing of the energy levels
towards the periphery of atoms. As we might expect, lines from more complex atoms
are more numerous and hence more difficult to sort out but just as with hydrogen,
they too arrange themselves into transition series.

Sodium and Friends

Here we go from element number 1 to element number 11 in the periodic table. Why
not go to element number 2; helium? you might ask. We’ll see shortly that helium has
a more complicated spectrum than sodium which is why we’re doing sodium first.
Sodium has one thing in common with hydrogen; it has what chemists call one valence
electron. This is also the case for sodium’s chemical cousins such as potassium and
caesium, etc. This means that so long as we’re dealing with bound-bound transitions
within the neutral atom, there is only this one valence electron to worry about. The
valence electron is relatively loosely bound to the nucleus in level n = 3 whereas the
remaining 10 electrons are bound much more tightly in closed shells in levels 1 and 2
and so don’t play any part in forming the spectrum.

Hy Hp Ho

Figure 3.8. The lines in all spectral series crowd together towards the short
wavelength end, as shown here for the Balmer series; a direct result of the closer
spacing of energy levels towards the periphery of an atom.
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Sodium and the other alkali metals as they are called do however have one big
difference from hydrogen. In hydrogen remember the I sublevels; s, p, d, {, etc. are
degenerate which means they all have the same energy. With sodium this is not the
case; s levels have different energy to p levels and so on, even for the same value of
n. This means for example that instead of just one spectral series in the optical part
of the spectrum like the Balmer series for hydrogen, there are four. In fact, the letters
‘s, p, d and f’ come from the first studies of these transition series in the optical
spectrum of sodium. The letters stand respectively for ‘sharp, principal, diffuse and
fundamental’—names which basically don’t mean anything.

Fig. 3.9 shows the energy level diagram for neutral sodium; energy level diagrams
are also often called Grotrian diagrams after W. Grotrian who published a collection
of such diagrams for simple spectra in 1928; they are also sometimes called term
diagrams. In a more complicated diagram like this the separate I levels are spread out
horizontally and labelled s, p, d and f accordingly and I've also included the principal
quantum numbers to remind ourselves which 7 levels they belong to.

The bottom two levels which contain the tightly bound electrons are not shown.
The energy scale down the left-hand side is very important here because it shows us
something very interesting besides the energy values for each level. You can see for
example that the 3d level is actually above the 4s level despite the 4s level having a
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Figure 3.9. The four optical fransition series for sodium (Na); notice that for each of
these series, the quantum mechanical selection rule for | is obeyed. The inset shows
the effective doubling of the 3p level due fo the fact that if the electron is ‘spin up” if
has slightly more energy than it has if it's ‘spin down'. Higher levels with | greater than
O are also doubled in this way.
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higher value for its principal quantum number. As described earlier, levels with a low
angular momentum quantum number / have an asymmetric distribution around the
nucleus and this results in the electron spending more of its time in closer proximity to
the nucleus; in consequence this electron has less energy than it might otherwise have.
By contrast, the 3d level has a symmetrical distribution which keeps the electron at a
constant distance from the nucleus; the electron has what you could call its rightful
quota of energy which turns out to be more than that for the 4s electron.

For the possible transitions, the selection rules apply; we’re only dealing with one
electron so whether it be spin up or spin down, its spin quantum number will remain
the same. The ‘I rule’ as we can call it means that in any transition its value must
change by 1 and only 1. This means that an electron cannot for example go from one s
level to another or from an s level to a d level. Transitions take place between adjacent
columns in our term diagram; we’ve also labelled each set of lines to indicate which
series it belongs to.

The mostimportantline for astronomers is the one which results from the transition
3sto 3pinthe principal series which is seen in the yellow part of the spectrum at around
A5892.1In alow-resolution spectrum this appears as a single line but at high resolution
it becomes double with its two components at A5889 and A5895. The reason for this
is to do with the electron’s spin quantum number s; it can either be +1/ or —1/. An
electron in the 3p level which is spin up has slightly more energy than one which is
spin down. Down in the 3s level (and this applies to all s levels in the atoms of all
elements) the spins are degenerate; they’re still there but for an s level, spin up and
spin down correspond to equal energy. In the 3s to 3p transition a slightly shorter
wavelength photon is absorbed by a spin up electron than a spin down electron. In
a large population of sodium atoms some of the electrons are spin up and some are
spin down, so we get two lines close together. The lines are called the ‘D (as named
by Fraunhofer) lines’. They are perhaps the most famous example of what’s called a
doublet line.

The single valence electron in the alkali metals such as potassium (K), rubidium
(Rb) and Caesium (Cs) can either be spin up or spin down and this results in the
energy levels outside of the inner core of electrons being doubled with the important
exception of the s levels. Hydrogen itself has doublet levels but their separation is
very small indeed. In fact, the separation in electronvolts (this of course translates
into separation in wavelength) gets bigger for elements further up the periodic table;
so for example lines from potassium are split wider than those for sodium. Also the
splitting is wider for transitions involving low [ values; hence the sodium D lines are
wider than those of the diffuse series lines which involve transitions between p and d
levels.

Dancing Electrons—It Takes Two

For atoms like sodium, the single valence electron has all the action and it isn’t affected
by the inner electrons which form tightly bound closed shells. However, if outside of the
closed shells there are two or more valence electrons then these valence electrons have
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to share the action; because they are electric charges they interact with each other.
Electrons also have ‘spin’; it’s called spin because it’s exactly the amount of energy
they would have if they were tiny spinning electric charges. A spinning electric charge
generates a tiny magnetic field and these spin magnetic fields also interact. The overall
result is that the energy levels for these valence electrons get modified by their own
interacting electric and magnetic fields. In quantum mechanics this interaction process
is called L—S coupling or sometimes Russel-Saunders coupling. Let’s see how it works.

Remember when we talk about / quantum numbers and s quantum numbers, we’re
really talking about units of energy which electrons have over and above that which is
specified by the principal quantum number #. When two or more electrons in an atom
interact, these units of energy can combine to effectively add together or compliment
one another or they may offset each other or even effectively cancel one another out.
Even for a single electron, its total energy is enhanced if it is ‘spin up) i.e. s = +1/
and diminished if s = —1/. A simple way to represent this is to simply add the spin
quantum number to the angular momentum quantum number and call the result 5’
So j=1I1+4150rl— 15 and j can be thought of as representing the electron’s total
energy; j is often called the ‘inner quantum number’. The exception is when I equals
0; in this case the spins are degenerate in the sense that they have no effect on the
electron’s total energy so j = 0 too.

Two or more electrons will try to push each other further apart because they are
after all negative charges and like charges repel. This effect is greater for higher values
of I because higher [ values mean that the energy levels are nearer to being spherically
symmetric and this results in the electrons interacting with each other more frequently.
The [ values for the electrons are thus said to be coupled.

The electron spins are also coupled but here it is the tiny magnetic fields generated
by the spins which do the interacting. Think of an electron as a tiny bar magnet; if
the spin equals +1/; the ‘north pole’ points up; if s equals —1/; it points down. Several
electrons which are all spin up will couple strongly and enhance each other’s total

Low [ values

High / values

Figure 3.10. The electrons on the left are in low [ value sublevels; these are
asymmetric and the electrons spend less time in close proximity fo each other. The
electrons on the right are in high | value sublevels which are more symmetrical; the
electrons spend more time in close proximity and so there is a stronger inferaction
between the levels.
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Figure 3.11. Interacting electron spins for a two valence electron atom; in case 1
the spin magnetic fields combine to enhance each other’s energy level. In case 2,
they combine to diminish each other’s energy level. In case 3 the spin magnetic fields
effectively cancel and have no effect on the energy levels. The overall result is that
energy levels for two valence electron atoms in which both electrons are optically
active are split info three and give rise fo friplet series of spectral lines.

Energy

energy; oppositely paired spins will effectively cancel each other so there is no overall
enhancement of the energy levels. Several spin down electrons will couple together to
effectively diminish each other’s total energy.

For a two valence electron atom, this has the effect of splitting the energy levels
into three as shown in Fig. 3.11. Let’s see how it works for an atom which has three
valence electrons; a familiar example would be aluminium (Al). For aluminium as
with sodium the n =1 and n = 2 levels are closed shells so for the three valence
electrons, life begins in the n = 3 level. Consider now the different combinations of
spins which these three electrons can have:

Case 1 Case 2 Case 3 Case 4

+1/2+1/2+1/2  —1/2—1/2—1/2 +1/2+1/2—-1/2 —1/2—1/2+1/2
A B C A B C A B C A B C

I've labelled the electrons A, B and C; let A’s angular momentum quantum number
equal ] (but not 0) and consider what happens to A’s total energy in terms of its inner
quantum number j:

e Case 1: s = 41 but s also equals +1/ for B and C; the strong coupling between the
electron spins effectively boosts A’s “j” value to [ + 3/2;

e Case 2: s = —1/ which offsets A’s I value and this is further diminished by s = —1/
for B and C; the resultis j =1 — 3/2;

e Case 3: s = +1/; this gives j = [ + 1/; the opposite spins of B and C cancel each
other and have no effect on A;

e Case 4: s = —1/; this gives j = — 1/ and as with Case 3 the opposite spins of B
and C have no effect on A.
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Whatever level electron A finds itself in (provided it’s not an [ = 0 level), it can have
any one of four possible values of total energy depending on its spin and that of its
companions. The energy levels are thus split into four; and this means that electron
transitions between these levels are split into four; these transitions are called quartets.

In the above scenario, all three electrons take part in the action and they are all
interchangeable; the spin combinations have the same effect on electrons B and C.
However, there is another possibility; this confines electrons B and C to their lowest
possible level and for aluminium this would be the 3s level where their spins would
be opposite. This then leaves electron A with all the action; electrons B and C take no
partin transitions but A can be either spin up or spin down so just as with sodium the
energy levels are doubled. Three valence electron atoms then, produce separate sets
of doublet and quartet transitions. There’s another feature here too; in the doublet
scenario, electrons B and C are acting almost like a mini closed shell and help to further
screen off the electric field of the atomic nucleus. This means that doublet levels are
not so tightly bound; by contrast in the quartet scenario, all three electrons can move
around the energy levels so the screening effect isn’t there. The result is that quartet
levels are closer to the nucleus and have total energies a bit lower than corresponding
doublet levels.

L-S coupling causes energy levels in multi-electrons atoms to split and the degree
of splitting is determined by the various possible electron spin combinations. Helium
for example is a two electron atom; if both electrons are involved in transitions the
combination of spins mean that each energy level is split into three (aside from the s
levels) and the result is a triplet series of transitions. If as with aluminium we confine
one electron to the lowest level the remaining electron has all the action but its spin
must be opposite to that of the confined electron. The resulting energy levels remain
single and a singlet series of helium lines results. In actual fact the splitting of energy
levels in helium is extremely slight and very high-resolution spectra would be needed
to show it.

The actual number of levels into which an initially single level is split is called the
multiplicity of the level and it is simply equal to the number of active valence electrons
plus one; so aluminium with its three valence electrons gives us 3 + 1 which equals 4
for the quartet lines and 1 + 1, i.e. 2 for the doublet lines.

Now for the usual final point; in a vast population of aluminium atoms there will be
doublet transitions and quartet transitions but for the most part ‘never the twain shall
meet’. Transitions between doublet levels and quartet levels or indeed between any
levels of different multiplicity within an atom are forbidden by quantum mechanics
but not totally; when they do occur the resulting lines are called intercombination lines.

The spectral series formed by ions (i.e. atoms which have lost one or more electrons)
are totally different from those of the neutral atom. This though turns out not to be
quite so bad because when an atom loses a valence electron, it effectively becomes
simply an atom with one less valence electron. For example, calcium when neutral
has two valence electrons and so produces spectral series which are singlets or triplets.
Ionised calcium (Call) has just one valence electron and so produces series which
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are doublets like sodium. The two strongest lines in the spectrum of the Sun are
Fraunhofer’s H and K lines which are produced by ionised calcium. The problem can
be made worse though, because the atmosphere of a star may well contain atoms of
some element in both neutral and ionised form and so the spectrum contains series
from both types of atom.

All in all spectra can be pretty complicated things and this is something which
astronomers have to learn to cope with. The ordering of spectral series into singlets,
doublets, etc. (the general term is multiplets) does clearly help and there is also the
added ‘blessing’ that many complex atoms are so rare that they are not likely to be
seen in stellar spectra. Even so the beginning amateur spectroscopist has a long hard
road ahead of him/her.

As astronomers, we’re more familiar with and probably feel more comfortable with
spectra which plot intensity of radiation against wavelength rather than frequency;
mainly because the numbers are easier to remember and deal with. A physicist though
might well prefer to plot intensity against frequency; the reason is that energy (for some
transition say) is directly proportional to frequency (of radiation absorbed or emitted
as a result of the transition). In other words doubling the energy means doubling the
frequency; tripling the energy means tripling the frequency and so on. This means
for example that transitions between a series of energy levels which were equally
spaced in energy would result in a series of spectral lines which were equally spaced in
frequency and this would show as a set of equally spaced lines in a spectrum but only
if the spectrum plotted intensity against frequency. The same spectrum plotted using
wavelength would not show equally spaced lines but lines which got closer together as
the wavelength got shorter. This is because frequency is proportional to the reciprocal
of the wavelength or one divided by the wavelength.

¢ Electrons move around the nuclei of atoms in stable orbits called energy levels.

¢ Each energy level is unique and can only be occupied by one electron at a time—a
consequence of the Pauli Exclusion Principle of quantum mechanics.

* The four main quantum numbers n, [, m and s form a kind of address system for
energy levels.

¢ An electron transition takes place when an electron moves from one energy level to
another as a result of receiving energy from or losing energy to the outside.

¢ Transitions can be bound-bound, bound—free (ionisation), free~bound (recombi-
nation) or free—free.

¢ Bound-bound transitions are subject to the quantum mechanical selection rules;
obeyed rules give permitted transitions; broken rules give forbidden transitions.
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e Upward bound-bound transitions are referred to as excitation; downward transi-
tions as de-excitation.

e Excitation andionisation can be caused by raising temperatures—thermal excitation
and ionisation.

* The continuous background of a spectrum is called the continuum as is the world
of free electrons outside of an atom.

e Spectral lines group together in series; e.g. the Balmer series for hydrogen; the s, p,
d and f series for sodium.

* Interaction between the outer or optically active electrons in multi-electron atoms
causes energy levels to be split into doublets, triplets, etc.



Our Old Friend
the Doppler Effect

Youwd be hard put these days to pick up any book on astronomy and not find somewhere
in its pages mention of the Doppler effect; this might be to do with the proper motions
of stars, the radial velocities of a binary star components or perhaps most famous of all
the expansion of the Universe (of course we know now that this actually isn’t a Doppler
effect at all but the expansion of spacetime itself, even though mathematically the two
effects are identical). As we shall see in the next chapter this most valuable of effects
plays a big role in spectra too; first though for completeness I shall explain it here and
we’ll also have a look at how important the ‘clever astronomer’s’ relativistic version of
the Doppler effect really is.

The Doppler effect is something which affects the frequency and thus the wavelength
of any form of wave motion; this means it can affect water waves, sound waves and
of course light waves. It occurs when there is relative movement between a source of
waves and the observer who of course we assume is a fully kitted out physicist with
the gadgets necessary to measure wavelengths, velocities, etc. In order for the effect to
make its presence felt, the relative motion must be along the line joining the observer
and the wave source or in other words directly towards or away from the observer.
Motion which is directed along this line is called radial motion and the velocity of
this motion is in turn called the radial velocity. If the wave source is moving at right
angles, i.e. across the observer’s line of sight or indeed if the observer is moving with
the wave source and so is not either approaching it or receding from it, then there is
no effect. The final thing is that it doesn’t matter whether it is the wave source or the

)
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observer or both who are moving; only the relative radial velocity between the two
matters and obviously it goes without saying that when we observe the Doppler effect
in any astronomical situation both are moving.

m

Suppose we are moving alongside a source of waves so that as far as we the observer
are concerned, the wave source is stationary. We can observe or at least detect that the
waves from the source are spreading out in all directions and that the wave crests (the
zones of maximum electric field strength for example for a light wave) are equally
spaced because they reach us at equal intervals of time. This gives the wave a well-
defined and fixed wavelength. In two dimensions the wave crests will form a series of
expanding concentric circles around the wave source and these are called wavefronts.
Now let’s get crazy and move towards the ‘eye of the storm’; rather than sitting and
waiting for the wave crests to come along; like an impatient surfer we rush headlong
towards the approaching wave crest and the next one after that and on and on. The
time between successive wave crests will now obviously be shorter; it’s exactly the
same effect as if a more laid back surfer with super powers had somehow shortened
the distance between the wavefronts and this is how we observe it. By moving towards
a wave source we ‘see’ a shorter wavelength. For a light wave this translates into seeing
a bluer wave, a blue shift; the faster we head towards the wave source or the faster it
heads towards us or both, the shorter the wavelength and the greater the blue shift.

Now let’s turn tail and race away from the approaching wavefront; this time the
wavefront has to catch us up and if the wave is moving faster than we are this will
eventually happen but it now appears as if there is a longer gap between wavefronts.
We see this as an increased wavelength or a red shift for light. Some waves we could
outrun and of course a jet airplane which breaks the sound barrier outruns its own jet
engine’s sound waves; with light though we can’t do this. In all of this it’s the relative
radial velocity which determines the wavelength shift; blue or red and the formula for
this shift is very simple indeed and of course extremely useful—so useful in fact that
you're likely to be using it all the time when analysing your spectra. Here it is

AL/ =v/c (4.1)

Here AX, which is pronounced ‘delta lambda;, is the change in wavelength caused
by relative motion between the wave source and the observer, A is the wavelength as
would be observed if the source were stationary, v is the relative radial velocity and ¢ is
the speed of light. The important thing when using this equation is to make sure that
AX and X are in the same units, e.g. angstroms, and that v and c are also in the same
units, e.g. kilometres per second. To rearrange the equation to calculate a wavelength
shift for a given radial velocity, we would put

AL =AXxv/c (4.2)

An excellent way to get a better feel for any equation like this is to try it out on a
real situation and see what kind of numbers we get from it. Let’s take a good round
number like 100 km/s for the radial velocity and a familiar spectral line like the Hex
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line at A6563; plugging these numbers into Eq. (4.2) we get
AL = 6563 x 100/3 x 10° which equals 2.19 A.

So a radial velocity of 100 km/s produces a red or blue shift of about 2 A at 16563;
shorter wavelengths will result in smaller Doppler shifts. Of course as an observational
spectroscopist youre more likely to want to do things the other way round; i.e. calculate
a radial velocity from what you believe to be a shifted wavelength on your spectrum.
Provided you can identify the line and know its laboratory wavelength you can simply
rearrange Eq. (4.1) to read

v=cxAL/A (43)

So for example, a wavelength shift of 5 A for the Ha line corresponds to a relative radial
velocity of 3 x 10° x 5/6563 which equals 228.55 km/s. At 1000 km/s the Doppler shift
for Ha increases to almost 22 A; however as ’'m sure many of you know, for very high
radial velocities, there is a more complicated Doppler shift equation which involves
the special theory of relativity so let’s have at look at this.

Ah=Ax — — 1 (4.4)

This is a much more involved equation than (4.2) and much greater care has to be
taken if you're going to use it; best of all write a simple computer program which allows
you to enter a rest wavelength and a radial velocity and then does the calculation for
you. The same rule applies in that AA and A must be in the same units as must v and
c. If we try this equation out on a radial velocity of 1000 km/s we get AX equal to
21.91 A compared to 21.88 A if we use Eq. (4.2); again I've taken the He line at A6563
as the rest wavelength. Clearly there isn’t much difference but to explore further I've
computed AX using both Eqs. (4.2) and (4.3) for a range of radial velocities and these
are summarised in Table 4.1.

Even at a radial velocity of 5000 km/s the difference in wavelength shift between
the non-relativistic and relativistic cases is less than 1 A. For the majority of situations
you're pretty well okay to use the simpler formula, i.e. Eq. (4.2). One final point about
using equations (4.2) and (4.4); a relative radial velocity which increases the separation
of the observer and the wave source is entered as a positive number and this will give
a wavelength shift AA which is also positive. Hence we have an increased wavelength
or a red shift. Relative radial velocities which decrease the separation of source and
observer should be entered as a negative number and this will result in a negative
wavelength shift, i.e. a blue shift.
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Table 4.1 The Doppler shift AA for the Ho line (16563) is shown here using both the
relativistic and non-relativistic formulae for a range of radial velocities. As can be seen, for
velocities up to about 5000 km/s, it’s probably okay to use the simpler non-relativistic
formula.

Radial velocity A Non-relativistic A Relativistic Difference %
(km/s) A) A) (A) Difference
1000 21.88 21.91 0.03 0.14
2000 43.75 43.90 0.15 0.34
3000 65.63 65.96 0.33 0.50
4000 87.51 88.10 0.59 0.67
5000 109.38 110.31 0.93 0.85

10000 218.77 222.54 3.77 1.72
50000 1093.83 1202.45 108.62 9.93
100000 2187.67 2718.48 530.81 24.26

Out there in the big wide Universe, all manner of things are moving in all kinds of
directions; these could be galaxies, stars or countless atoms within the photosphere
of a single star. The light that we observe these things by is more often than not going
to be either red or blue shifted by the Doppler effect; but also, more often than not
a source of light waves won’t be moving either directly towards or away from us or
exactly across our line of sight. Things out there will more generally be moving at
some angle to our line of sight; either more or less towards us or more or less away
from us. The actual motion of a light source can be split into two components; one
part is directed across our line of sight and is called the tangential motion; the other
component is that part of the object’s motion which would carry it directly towards
or away from us and this is of course called the radial motion. The real actual motion
of the wave source through space is called perhaps not surprisingly the space motion.

Tangential motion Radial motion ~ Space motion

Radial motion ~ Space motion Tangential motion

lTo Earth

Figure 4.1. The space motion of any astronomical object can be split” into fwo
componenfs af right angles to each other: one is directed across the plane of the sky
and is called the tangential motion; the other is directed either directly towards or
directly away from us and is called the radial motion. The value of the radial motion
both in ferms of speed and direction defermines the Doppler shift.
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A Simple Application—Spectroscopic Binaries

One of the things we learn about in elementary astronomy books is that there are in
the sky many double stars or binaries. Binaries are stars which are physically bound to
each other by their gravitational attraction and as a result they each orbit about the
common centre of gravity of the system. Provided the plane of the orbit is not face on
or at right angles to our line of sight, then clearly as the two stars revolve about one
another, one will generally be moving towards us while the other moves away. There
will also be times when both stars are crossing our line of sight in opposite directions.

The components of many binaries are too close together to be seen separately in a
telescope; in this case the spectra of the two stars blend into one combined spectrum.
Due to the orbital motion however the lines in one of the spectra will periodically show
a varying red shift while those of the other will show a blue shift; the lines split and
move apart. As the two stars cross our line of sight the lines close up, swap shifts and
move apart again. The binary nature of the system has been given away by the periodic
behaviour of its spectrum; binaries which do this are called spectroscopic binaries.

Clearly the effect will be greatest for those systems which are seen edge on from the
Earth; this maximises the radial velocities of the stars. The line separation will also be
greater if the stars have relatively high orbital velocities; these can be worked out using
Kepler’s third law of planetary motion (it works for stars too). Kepler’s third law is the
‘complicated one’ that relates the cube of the radius of the orbit to the square of the
orbital period. Provided we stick to giving the masses of the stars ‘M; and M,’ in solar
masses and their separation ‘@’ in astronomical units (remember one astronomical
unit or 1 AU is the mean distance from the Earth to the Sun and is equal to 1.5 x 103
km), then Kepler’s third law gives in a very simple form the orbital period squared for
the binary in sidereal years (one sidereal year equals 365.26 days);

3
2 a

= — (4.5)
M, + M,

Best to do a simple calculation to show that it really is quite straightforward. Let’s
take two stars each of mass equal to that of the Sun which are orbiting each other at a
distance of 1 AU. Plugging these value in gives P? equal to 1° divided by 1 + 1 which
equals 1, so P is equal to 1/4/2, i.e. 0.707 sidereal years. The circumference of the
orbitis 7 x the diameter;i.e. 7 x 1.5 x 108 km which equals 4.7 x 103 km. The stars
have to cover this distance in 0.707 sidereal years; 0.707 sidereal years is equal to 2.2 x
107 s; so their orbital velocity has to be 4.7 x 10® divided by 2.2 x 107 which is equal
to about 21 km/s. Now let’s suppose that we ‘see’ the orbital plane of this binary edge
on so the maximum radial velocity of the stars will also be 21 km/s; using the simple
Doppler shift formula (4.2) we would observe a maximum shift for each of the stars
of about 0.46 A for the He line. So the lines’ maximum separation would amount to a
little under 1 A. A smaller separation between the binary components and/or greater
masses will result in a shorter orbital period and higher orbital and radial velocities.

Very often the masses of the two stars are unequal; this shifts the centre of mass of
the system towards the more massive star. The two stars orbit the centre of mass with
the same orbital period but now the less massive star is further away from the centre
of mass and so has further to go; it therefore moves faster. As a result, the two stars
have different orbital and hence radial velocities; what we observe is the two spectral
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lines oscillating about a central wavelength but with different amplitudes. A further
level of complexity occurs when the stars move on elliptical orbits, again about the
common centre of mass of the system. In this case the stars’ orbital and hence radial
velocities vary constantly and so the rate of separation of the lines varies too.

* Relative radial motion between a wave source and the observer causes a wavelength
shift—the Doppler effect.

e For increasing separation between source and observer, the radial velocity is treated
as positive and results in a red shift.

e For decreasing separation, the radial velocity is negative and a blue shift is the result.

* Motion across the observer’s line of sight produces no wavelength shift.

e For radial velocities up to about 5000 km/s, the difference in wavelength shift when
using the relativistic Doppler formula, as opposed to using the non-relativistic
formula, amounts to less than 1 A and so it’s probably okay to use the simpler
formula.

* Thespace motion of any object can split into two components; the tangential motion
and the radial motion.



When Is a Spectral
Line Not a
Spectral Line?

Electron transitions enable atoms to absorb or emit light. From what we have learned
so far, the absorbed or emitted light is of a very specific wavelength which itself
depends on the energy difference between the energy levels involved in the transition.
This leads to the conclusion that absorption lines and emission lines also have very
specific wavelengths—the He line is at A6563 after all. However, you only have to look
at any astronomical spectrum to realise that spectral lines have a definite width, i.e.
they spread out across a range of wavelengths. What’s more by careful examination it
becomes clear that some lines, if they are absorption lines, are darker than others and
some may even appear to divide up into several dark component lines connected by
less dark regions. A spectral line clearly isn’t just a simple infinitely narrow line; the
answer to the question posed in the title of this chapter is— ‘when it is a line profile’.
All spectral lines have a line profile; in older books it was also sometimes referred to
as the line contour.

In this chapter we’re going to dive into the wonderful world of physical processes
which cause spectral lines to broaden. The reason for doing this is that these processes
take place in stars and so careful study of broadened spectral lines can tell us many
things about the stars themselves.

In the old days, an astronomical spectrum was in fact a photograph of the spectrum
itself recorded on a photographic plate. So it was often presented as a band of light
(the continuum) running from violet to red, crossed by dark absorption lines or

)
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bright emission lines. Nowadays a spectrum is presented as a graph or a plot of
intensity of radiation against wavelength. For most spectra the intensity is measured
in arbitrary units which are probably some function of the CCD photon count; we then
have what is known as an uncallibrated spectrum. Depending on the research being
undertaken, professional astronomers will sometimes go to a great deal of trouble to
secure spectra which are calibrated. This means that the plot is showing the actual
intensity of radiation being received form the star and this is measured in watts per
square metre per angstrom. Amateur spectra like most professional spectra are most
likely to be uncallibrated spectra but they are still of course of enormous value because
the topography of the spectrum plot doesn’t depend on the units of intensity and it
is the topography or shape of the spectrum which reveals so much about the physical
processes which are taking place.

In a spectrum plot, absorption lines now appear as dips in the continuum; darker
lines will be deeper dips and emission lines will appear as spikes superimposed on top
of the continuum; the brighter the line the taller the spike. If we zoom in’ on say one
of the absorption lines, we will see that the line actually spreads out over a range of
wavelengths and that instead of a ‘line” we have perhaps a curved ‘v’ shaped dip in the
continuum or maybe some other shape of curve. The actual shape of the curve is called
the line profile. All spectral lines have such a line profile and there are several basic
physical processes which produce it. Usually two or more of these processes combine
together to give a spectral line its final profile, and in this chapter we’ll be looking at
the effects of these processes. There are also other processes which can produce some
weird and wonderful line profile shapes in astronomical spectra and we’ll look at some
of these later in the book.

W

Some lines in a spectrum are broader and/or deeper (darker) than others and there
is a straightforward way to quantify this. Fig. 5.1 shows a stylised absorption line as
a rounded ‘v’ shaped dip in the continuum and in fact most line profiles will have a
generally rounded shape with edges which gradually flatten out as they merge into the

Wavelength

Blue wing Red wing

Intensity Continuum Continuum

Figure 5.1. The
simple anatomy of
a line profile.
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Saturated

Unsaturated

Absorption

Unsaturated Saturated

Emission

Continuum

Figure 5.2. Unsaturated and saturated line profiles. The core of a saturated
absorption line completely removes a narrow slice of the continuum. The top of a
saturated emission line is flattened because over this narrow wavelength range, the
hot gas is emitting the maximum amount of radiation possible, i.e. it is emitting as a

black body.

neighbouring continuum. The edges or outer parts of a line profile are referred to as
the wings while the central part of the profile is called the core.

Depending on how broad the line profile is and how deeply it penetrates into the
continuum, there will be a smaller or greater area contained within the line profile.
An absorption line which dips right down to the bottom of the continuum (such a
line on an old style photograph spectrum would appear completely black) is said to
be saturated. A saturated emission line profile is one which either goes right off the
top of your plot or strictly speaking have a flattened top rather than a rounded one as
shown in Fig. 5.2. This means that the actual source of that emission line is emitting
as much radiation as is possible under the local conditions or put another way, just
for that narrow range of wavelengths the source is emitting like a perfect black body.

Fig. 5.3 shows both a stylised absorption line and an emission line which enclose
equal areas. Also shown is a rectangular ‘slice’ removed from the continuum whose
area equals that within the two line profiles. The width of this rectangle in angstroms
defines the equivalent width of the lines. This is a term which you will come across a
great deal in the literature.

If you want to work out an equivalent width for yourself, one fairly straightforward
way to determine the area within a line profile is to plot the spectrum on graph paper
and count the squares. Alternatively, a computer mathematics package might be able
to ‘i’ or match a curve to the line profile and determine the area within it. It’s also
necessary to determine or at least estimate the height of the neighbouring continuum
in the arbitrary units of intensity (determine the continuum height on either side of
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Figure 5.3.
Defining the
equivalent width of

) ) a line; the shaded
Equlvalznt width areas are all equal.

the line and take an average; the continuum may well be sloping across the width of
the line). Now draw two parallel lines from the top to the bottom of the continuum
such that the area contained within the lines (i.e. the rectangle) is equal to the area of
the line profile. The height of the continuum will fix the width in angstroms of this
artificial rectangular line profile and this equals the equivalent width of the real line
profile. Finally, in case you have difficulty in determining where the line profile wings
end and blend into the continuum, I'll be describing a method for doing this later in
the chapter.

A real astronomical spectrum is usually produced by some sort of gas; this might be the
hot gas in the photosphere of a star or gas in a planetary nebula which is irradiated by
ultraviolet radiation from the central star. Stellar photospheres and planetary nebulae
are big, which means they consist of vast numbers or in other words, a vast population
of atoms. Many of these atoms will be hydrogen atoms simply because the Universe
contains a heck of a lot of this stuff; there will probably be plenty of helium atoms
too as well as atoms of other chemical elements like carbon, oxygen and nitrogen.
You could be forgiven for thinking though that within a given species of atom—say
all the hydrogen atoms within a planetary nebula, each atom is pretty much the same
as any other. They may be in different states of excitation of course with some having
their electron in the ground state, some in the n = 2 level and so on. This could give
rise to different spectral series; downward transitions to the n = 1 level will produce
emission lines of the Lyman series in the ultraviolet, whereas transitions to the n = 2
level will give us the Balmer lines which of course include the He line. Surely though,
all atoms which produce the He line are the same, aren’t they? Well no! For one thing
these atoms are all moving around in different directions and with varying speeds and
this will affect the profile of the Ha line which is emitted by these atoms, as we’ll see
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later. There are other things too which make atoms in such a vast population different
from each other. We’ll look at these things in turn and see how they affect the line
profile.

Let’s do an imaginary experiment; a thought experiment or a gedanken experiment as
physicists call it. Take a motionless hydrogen atom with its electron in the n = 3 level;
the electron drops to the n = 2 level and the radiation comes out at A6563. Now take a
seemingly identical hydrogen atom and let the same thing happen; again the radiation
comes out at A6563—or does it? Well in fact, if we were careful in our measurements
we’d find that the radiation doesn’t come out at exactly A6563—it comes out at a
wavelength slightly greater or less than this value. Yet another atom would give yet
another slightly different result. If we repeated our thought experiment many times
with individual atoms and combined our results, we’d find that there was a spread of
wavelengths centred on A6563. All of these atoms are undergoing the same transition
and therefore are producing He line radiation, so what’s going on?

At the risk of it sounding like much of what was said in Chapter 3 was a ‘con job’; the
energy which an electron in a given energy level has is not a precisely defined quantity.
This comes from another of the great principles of quantum mechanics called the
Heisenberg uncertainty principle. In the situation here it says that the time an electron
spends in an energy level and the energy it has when it’s in that level are connected. An
energy level which is very stable (a metastable level would be a good example) means
that an electron will spend a long time there and in consequence the uncertainty in
the electron’s energy is very small. By contrast a fairly unstable level, i.e. one in which
the electron would be expected to spend very little time (for example a higher level to
which the electron has been excited), results in a greater uncertainty in the value of
the electron’s energy. The overall effect is that energy levels in an atom have an inbuilt
‘fuzziness’ and the less inherently stable a level is, the fuzzier it is as depicted in Fig. 5.4.

Imagine a vast population of hydrogen atoms and also imagine for the moment that
they are not moving around but simply ‘sitting there’. In this thought experiment our
atoms all have their electrons in the n = 3 energy level; the electrons then drop to the
n = 2 level and in doing so emit radiation which we use to produce a spectrum with
our hypothetical spectroscope. All the radiation comes out close to A6563 and so our
entire spectrum consists basically of just a Ho line. The radiation from some of our
population of atoms may well come out at bang on 16563 but much of it will be emitted
at wavelengths either slightly greater than or slightly less than the central value. The
result is that our He line won’t be a line at all but a broadened He line profile. It will
look something like that shown in Fig. 5.5, i.e. a fairly narrow core with shallow but
relatively broad wings. This form of spectral line broadening is an inherent property
of all atoms and as described above comes from a fundamental principle of quantum
mechanics—the Heisenberg uncertainty principle. It is called natural line broadening;
it is also often called natural line damping and sometimes radiation damping. So if
our population of atoms were doing nothing else, the spectrum produced by it would
contain line profiles of finite width rather than infinitely thin lines.
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Figure 5.4. The effect of ‘fuzzy’ energy levels on electron transitions. In case ‘A’ the
energy levels are sharply defined and so transitions 1 and 2 correspond to the same
energy and hence wavelength, as do fransitions 3 and 4. In case ‘B’ the uncertainty
in the energy levels causes variation in the energies of transitions; furthermore the
degree of ‘fuzziness’ increases for increasing levels of excitation, resulting in
increased variation in wavelength for higher transitions.

It’s easy to see how this process works for absorption. If our hydrogen atoms were
bathed in a beam of light (the correct general term for a beam of any form of electro-
magnetic radiation is a radiation field), then some of this light would be absorbed by
the atoms. Let’s suppose that initially all the atoms have their electron in the n =2
level so that light from the radiation field at A6563 will be absorbed to give us the
centre of the Ho line. However, due to the slightly different energy values ascribed
to the energy levels (the n = 2 and »n = 3 levels in this particular case) within our
population of atoms, light at wavelengths on either side of 16563 will be absorbed too
and this will result in a naturally broadened He absorption line.

Figure 5.5. The
He line profile
naturally broadened
by slight variations in
the energy levels as
a result of the

6563 —  Heisenberg

Wavelength uncertainty principle.
angstroms
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Figure 5.6. The shapes of naturally broadened line profiles; they are narrow but
with relatively extensive wings for transitions to lower energy levels (e.g., the Hex line)
but become more smeared out for fransitions fo higher levels (HB, Hy, etc.). Even so
the overall effect is very slight; amounting to no more than a few ten thousandths of an
angstrom at optical wavelengths.

The higher the excitation of an energylevel, the shorter the length of time an electron
is likely to spend in it. This means a greater uncertainty in the electron’s energy and
in consequence a broader line for transitions involving higher levels in a transition
series as illustrated in Fig 5.6. However, for a given number of atoms a broader line
also means a shallower absorption line or a less intense emission line. Having said all
this it turns out that at optical wavelengths the uncertainties in energies correspond to
wavelength spreads of the order of a few ten thousandths of an angstrom; so natural
line broadening isn’t something which is likely to cause the amateur spectroscopist
any problems.

As described in the previous chapter the Doppler effect is one of those bits of physics
that crops up time and again in astronomy, which is another way of saying that it
has enormous value for astronomers. In the context of astronomical spectroscopy, an
atom emits a photon of light as a result of an electron transition (let’s stick with the
n = 3 to n = 2 transition for hydrogen) and the emitted photon is observed to have
a wavelength of 16563. Now let the atom move so that a component of its motion
is directed either towards or away from us; remember this component of the atom’s
motion s called the radial motionand the associated velocity is called the radial velocity.
Then as is well known, if the radial velocity is directed towards us, the emitted photon
will be observed to have a wavelength shorter than 16563, i.e. the photon has been
blue shifted. Conversely, if the radial velocity is directed away from us the emitted
photon is seen to be red shifted. The greater the radial velocity is, the greater is the
resulting blue or red shift. As we saw in Chapter 4, provided the radial velocity isn’t
too high, the equation connecting the shift in observed wavelength; A\ with radial
velocity v, is simply given by

AL/) =v/c (5.1)

Here A is the unshifted wavelength (6563 A in this case) and c is the speed of light.
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When Things Get Hot

The individuals in the vast population of atoms making up the gas in say the atmo-
sphere of a star or a planetary nebula are in constant motion. This is simply because
the gas has a temperature above absolute zero and in fact the higher the temperature of
the gas, the greater the average speed of the gas atoms. Notice the phrase here ‘average
speed’; like the crowd of runners in the New York marathon, some have higher speeds
than others. The range of speeds for a population of atoms results in an equivalent
range of radial velocities as seen by us here on the Earth. There will be a range of
radial velocities directed both towards us and away from us. There will also of course
be many atoms which are moving across our line of sight and which thus have zero
radial velocity. Let’s say we have a population of hydrogen atoms and let’s also suppose
that we have been able to somehow eliminate natural line broadening. Ho photons
emitted by our population will show a range of red and blue shifts on either side of
A6563 and this will again result in a broadened line profile rather than an infinitely
thin line.

The line profile itself will not surprisingly reflect the range and distribution of
velocities of the atoms and in fact the profile turns out to have a shape which is
very familiar to statisticians. It is that of what is known as a normal distribution or
sometimes a Gaussian distribution (named after the great nineteenth-century German
mathematician—Carl Friedrich Gauss). It is a bell-shaped profile like those shown in
Fig. 5.7, which I've computed for some typical stellar temperatures. It has a wider core
but less well-developed wings than the natural line broadening profile. The width of
the core itself is determined by the average velocity of the gas atoms which in turn
is determined by the temperature of the gas. This form of line broadening which

Intensity
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Wavelength - angstroms

Figure 5.7. Thermally broadened Ha line profiles for a range of temperatures; the
characteristic ‘bell-shaped’ profile is well known to statisticians as a ‘normal
distribution’ or sometimes a ‘Gaussian distribution” after Carl Friedrich Gauss.
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is caused by the thermal motion of the gas atoms is called not surprisingly thermal
broadening and sometimes also Doppler broadening.

For the case of absorption lines, we have to imagine ourselves riding on a hydrogen
atom. We are bathed in the light of the radiation field which of course includes
photons at 16563. Because of our motion however our hydrogen atom ‘sees’ these
photons at a different wavelength, Doppler shifted by our radial velocity relative to
the incoming light beam. So our electron in the n = 2level ignores them and they pass
us by. However that same Doppler shift can make a photon of some other wavelength
appear as A6563 and our atom absorbs the photon. Back on the Earth it appears
that this particular atom has absorbed a photon in the vicinity of, but not exactly at
A6563 and indeed other atoms will be perceived to have absorbed photons covering a
range of wavelengths centred on A6563 to produce a thermally broadened absorption
line.

How to Determine the Temperature of the Gas

In most cases the width of the core of a Doppler broadened line profile will be sig-
nificantly greater than that due to natural line broadening; as we have seen, natural
broadening amounts to perhaps a few ten thousandths of an angstrom. So for the
most part we can ignore it and then it turns out to be very easy to work out the
temperature of the gas which is responsible for a thermally broadened spectral line. A
population of gas atoms will have a range of velocities which depend on the temper-
ature of the gas. Within this range there will be one velocity which the gas atoms are
more likely to have than any other and this is often called the Doppler velocity vp. The
Doppler velocity is related to the temperature of the gas by (once again) a very simple

formula.
[2kT
Vp = — (52)
m

Here, kis one of the great fundamental constants of physics called Boltzmann’s constant
named in honour of the Austrian physicist Ludwig Edward Boltzmann. It is the con-
stant which connects the temperature of a gas to the speed of its atoms or molecules
and its value is equal to 1.381 x 10~% J/K. The quantity m in Eq. (5.2) is the mass of
the individual gas atoms we are dealing with; for example, the mass of the hydrogen
atom is 1.674 x 1072 kilograms (kg) and T of course is the temperature (in Kelvin)
which we want to work out.

A radial velocity of vp corresponds to a wavelength shift which we can call Aip
and if we plug this and vp into Eq. (5.1) we have

A)LD = )\,0 X VD/C (53)

Using the value for vp givenin Eq. (5.2), abit of rearranging will give us the temperature
T in terms of AAp

mx c?

= ———— X AM} 5.4
2x kx A} P (54)
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Let’s put the mass of the hydrogen atom in for 1 and the values for ¢ and k in order
to start turning this into a simple ‘plug in’ formula; we get

AN
25

T =5.455 x 10'? x (5.5)

The quantity AAp turns out to be related in a very simple way to a quantity which
can be measured directly from a spectrum; this is the total width in angstroms of
a line profile at half of its maximum height or depth. This is called the full width
half-maximum (FWHM). ALp is equal to FWHM/1.665; so AA% is then equal to
(FWHM)?/2.772. This turns Eq. (5.5) into

1,968 x 10'2 x (FWHM)?

T
A5

(5.6)

Let’s take our old friend the He line; so AJ will equal 6563 x 6563. Suppose the FWHM
for the line is 1 A, then plugging these values in we get T = (1.968 x 102 x 1)/
(6563 x 6563) which is approximately equal to 45,000 K. Don’t worry too much about
the above details unless you need to use the mass for atoms other than hydrogen in
Eq. (5.4) (all other atoms being more massive than hydrogen, will give narrower line
profiles for a given temperature), otherwise just use Eq. (5.6).

Having said all this, the chances are that you'll already know the temperature of the
star simply from its spectral type. However, you may well find that the FWHM of a
spectral line is greater than it should be based on this temperature and this is most
likely due to turbulence in the star’s atmosphere.

In the outer layers of stars (including the Sun) heat from inside the star is carried to
the surface primarily by convection; that is to say, ‘globs’ of gas pick up heat from the
interior and rise to the surface. The heat is radiated away; the globs of gas cool and
sink back down into the interior. In many cases, particularly in the atmospheres of
red giant stars, this convection process is not a smooth one; the atmospheric gases
suffer a great deal of turbulence. Turbulence is caused by larger scale motions of the
gas atoms which give rise to swirls and eddies; the same kind of thing happens in the
Earth’s atmosphere and in flowing streams and rivers. The overall result is random
motion just like thermal motion but on a larger scale and what’s more the effect
on spectral lines is exactly the same as Doppler broadening. Thus, turbulence will
simply increase the width, i.e. the FWHM of a thermally broadened line. Just as we
used the Doppler velocity vp to quantify the thermal motion of the gas atoms we can
do the same for the effect of turbulence and simply call it the turbulence velocity ‘vr’
The turbulence velocity is the most likely velocity that the gas atoms will have due
turbulence phenomena in the star’s atmosphere and this simply adds to the Doppler
velocity. So in Eq. (5.3), vp is replaced by vp + vr and Eq. (5.3) turns into

Alpir = Ao X (vp + v1)/c (5.7)
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As before AApir = FWHM/1.665. If you know the temperature of the star (e.g.
from its spectral class), then Eq. (5.2) will give you the Doppler velocity vp and a bit
of rearranging of Eq. (5.7) will enable you to calculate the velocity due to turbulent
motion in the star’s atmosphere.

One of the things which is clearly going to affect the equivalent width of a spectral
line is simply the number of available atoms to either absorb or emit radiation of a
given wavelength. If the gas is of fairly low density; i.e. relatively few atoms per cubic
metre, then ‘collisions’ between atoms will be relatively few and far between. The
word ‘collision’ though widely used is not a good one; a better term would be ‘close
encounter’. With continued increase of the gas density, close encounters between atoms
become more frequent. An atom is a tiny bundle of electricity and when two atoms
get close, their electric fields affect, or as the professionals say, ‘perturb’ each other.
This perturbing of the atoms’ electric fields disturbs the energy levels in the atoms and
results in transitions between a given pair of levels taking place at wavelengths which
are shifted from that which would normally be expected. In the usual vast population
of atoms this results in a broadened line profile. This form of line broadening is known
as collision or pressure broadening.

It turns out to be a very complex process and ironically hydrogen which of course
in many respects is spectroscopically the simplest of atoms, is the most difficult to
analyse for collision broadening. This is largely due to the degeneracy of the I sublevels.
Generally speaking though the effect of collision broadening on the line profile is
similar to that of natural line broadening but on a much bigger scale, i.e. most of
the broadening takes place in the profile wings. Collision broadening is as might be
expected, important in stars with dense atmospheres, notably white dwarfs, it is also
important as we shall see later in the study of what’s called the ‘curve of growth.

On paper a spectrum looks just like a graph which plots intensity of radiation against
wavelength and it is tempting to think that you could determine how much radiation
is being emitted at any given wavelength by simply reading values directly off the plot.
In reality though your spectrum consists of a series of ‘wavelength bins), ostensibly
of equal width running along the wavelength axis; each bin is centred on a specific
wavelength. All incoming photons whose wavelengths fall within the limits spanned
by a given bin will go into that bin. When the spectrum is complete, all of these photons
will add to produce the total contribution from the bin and this in turn will produce
one single point on the final spectrum plot as depicted in Fig. 5.8. If the wavelength
bins are narrow the final spectrum will be of high resolution and will show a lot of
detail; on the other hand if the bins are wide, more information will be lost because all
the photons which fall within this wavelength range are simply being added together
to make one point.



\ 62) Spectroscopy—The Key to the Stars

Theoretical
spectrum \

No. of photons
1

_ Obseved spectrum
M '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T

I | I !
T T T -1 T T 11T 1T T T T T LI I B B | Ll T T T
6562 6562.1 65622 6562.3 6562.4 6562.5 6562.6 6562.7 6562.8 6562.9 6563 6563.1 6563.2 6563.3 6563.4 6563.5 6563.6 6563.7 6563.8 6563.9 6564

Wavelength bins — centred on indicated wavelength

Figure 5.8. A real spectrum consists of a series of ‘wavelength bins’ centred on
regularly spaced wavelengths; each point on the spectrum corresponds to the number
of photons whose wavelengths fall within the range of the wavelength bin. Narrower
wavelength bins (i.e. a higher resolution spectrum) result in more closely spaced
poinfs and an observed spectrum which approaches the theoretical one.

The instruments which you use to produce a spectrum; i.e. telescope, spectroscope,
CCD camera will combine to produce wavelength bins which will never be narrower
than some minimum width. The result is that there will always be some blurring
and therefore loss of fine detail in the spectrum. This is irrespective of other line
broadening mechanisms and of course atmospheric seeing; it is called the instrumental
profile.

Now take a spectral line with significant thermal broadening and a high-resolution
spectrum; clearly the line profile will be spread over several wavelength bins. Let’s
think about what’s happening in a typical wavelength bin. It contains those photons
whose wavelength falls within the range of the bin. These come from atoms whose
radial velocities fall within a given range as seen by the observer on the Earth. So their
combined contribution to the line profile is just one single point on the plot. But hang
on a minute; our subset population still amounts to a huge number of atoms and this
subset of course is subject to natural line broadening. So while the range of radial
velocities within the subset will put their contribution into one single wavelength
bin in the spectrum, the added effect of natural line broadening within the subset
enhances, i.e. increases the range of wavelengths which are either absorbed or emitted
by this subset population. For many atoms, their contribution will still fall within our
wavelength bin but those which would come close to the edge of the bin due just to
their radial velocity can now be pushed over the edge into the next bin by the effect
of natural line broadening. Conversely, contributions from the bins next door can be
pushed over into our bin by the same effect. This is shown in Fig. 5.9.
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Figure 5.9. The total number of photons in a typical wavelength bin contributes to
one single point on the spectrum. Photons, whose wavelength due just to Doppler
broadening would put them close to the edge of the bin, can in fact be 'pushed over’
info the next door bins by the effect of natural broadening (crifical photons A), which
can shift their wavelength just that bit more. In turn, the bin can receive photons from
the next door bins by the same process as with the crifical photons B depicted here.

Our thermally broadened line profile effectively has a series of natural line broad-
ened profiles running through it. We say that the Doppler profile is convolved with
a natural broadening profile. A thermal or Doppler broadened profile which is con-
volved with a natural broadening profile will have slightly extended wings (as men-
tioned above the width of the natural line broadening core is usually very much less
than that of the Doppler core) and this profile a called the Voigt (pronounced ‘foyked’)
profile after the German astronomer Hans-Heinrich Voigt.

If you take or are planning to take high-resolution spectra, it’s very likely that you’re
interested in looking at line profiles in more detail. We’ve already seen how measuring
the full width half-maximum for a line can give information on the temperature of a
gas well as the velocity due to turbulent motion in a star’s atmosphere. Provided you
can estimate the level of the neighbouring continuum it’s not too difficult to do this.
However, a seemingly much more difficult problem is to determine exactly where the
wings of a line profile end and blend into the continuum. This is particularly the case
if the neighbouring continuum has lots of little spikes and dips in it which may be
real spectral features or simply ‘noise’ due to the instrumentation. Here’s a method
for determining the wing limits of a line profile which seems to give good results



é_‘}) Spectroscopy—The Key to the Stars

Function of Here the gradient or slope
photon count of the line is large but negative

1600 /

1400

1200 7 Here the slope decreases

1000

800 7 Here the slope has levelled off

600 and reached zero.

400
200

0 T T T T T T T T 1
6562 6564 6566 6568 6570 6572 6574 6576 6578 6580

Angstroms

Figure 5.10. A typical line profile from core fo red wing; the gradient or slope of
the line becomes less negative as we approach the wing and eventually reaches zero
as it merges info the continuum.

(it certainly satisfied the examiners of my PhD thesis); to use it you really need a
computer spreadsheet package such as Microsoft Excel.

The raw data for a spectrum is just a series of pairs of numbers; one of these numbers
will be a wavelength and the other a number whose value is related in some way to the
photon count produced by the equipment. In fact, for want of a better name we can
simply call this number the photon count; so the spectrum is just a plot of photon
count vs. wavelength. We’ll take the case here of an emission line but the method
works equally well for absorption lines. We’ll also assume for the moment that the
continuum across the width of the line is ‘flat’; this means that there is no overall
continuum slope across the line irrespective of all the little spikes and dips. We shall
also cut the line in two so that we can deal with the red and blue wings separately; so
let’s plot the red wing of our line profile as shown in Fig. 5.10.

As we move away from the top or peak of the line, we plunge down the slope
of the line core. This part of the line has a significant negative gradient which is
another way of saying that the photon count is dropping fast as we increase the wave-
length. As we approach the wing this gradient levels off and becomes less negative.
Eventually the line will reach the continuum and the gradient will approach zero.
So the key to finding the wing limit is to find where the gradient of the line be-
comes zero. Clearly we need to be able to measure the gradient or slope of the line
as we move along it from peak to wing and this is most easily done with a computer
spreadsheet.

Have your data in two columns as shown in Fig 5.11a; then at the head of a new
column use the spreadsheet ‘slope’ function (all spreadsheets should have a version
of this function) to determine the slope or gradient of the line profile over a number
of wavelength bins; here I've used 10 bins.
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E1 ~| =] =SLOPE{B1:B10.A1:A10)
LI G D E [
1 [ 656556 061072 [-0.50831]
2| 6565.63 0.59726
. 3| 65657 0.5587
Figure 5.11.a. 4| 6565.77 050414
Use the ‘slope 5 | 6565.84 0.46417
function on your 6 | 656591 0.43357
spreadsheet to 7 | 6565.97 0.4037
caleulate the 8| 6566.04 0.37421
gradient shown 9 | es66.11 0.33847
here in cell E1) of 10| 6566.18 0.31275
the line profile over 11| 6566.25 0.28900
a small range of 12| 6566.32 0.27532
wavelength bins. 13| 6566.39 025796
Figure 5.11.b. E2 | = =SLOPEB2B11.A2Al1)
Here I've clicked on [EATEN S Cc D | E |
cellE1 and dragged 1 _6565.56_ 0.61072 -0.50831
the mouse all e 2 [ 6565.63 0.59726
way down the data 3 6565.7  0.5587 -0.45258
set. |'ve then used 4 | 6565.77 0.50414 -0.40201
the 'fill down’ 5 | 6565.84 0.46417 -0.36062
operation to 6 | 6565.91 0.43357 -0.33087
determine the 7 | 6565.97 0.4037 -0.29974
gradients of 8 | 6566.04 0.37421 -0.26675
successively shifted 9 | 6566.11 0.33847 -0.22969
line profile segments. 10| 6566.18 0.31275 -0.20442
The gradient of the 11 |_6566 25 028999 -0.18924
boxed segmentis given 12 6566.32 0.27532 -0.17523
in cellE2 and so on. 13 6566.39 0.25796 -0.1614
D1 | = =AVERAGE(A1:A10)
A B c D E F
1 [ 6565.56| 0.61072 -0.50831
2 | 6565.63| 059726 -0.497
Figure 5.11.c. 3 6565.7 =0.45250
Now use the 4 | 6565.77 -0.40201
‘average’ or 5 | 6565.84| 22746417 -0.36062
mean” fonclion o 6 | 6565.91| 0.43357 -0.33087
ook 7 | 6565.97| 0.4037 -0.29974
8 | 6566.04| 0.37421 -0.26675
central Wove,|e”9'h 9 | 6566.11| 0.33847 -0.22969
of your first line 10| 6566.18| 0.31275 -0.20442
profile segment; 11 656625 0.28999 -0.18924
E“]fefed here in cell 12 6566.32 0.27532 0.17523
: 13

6566.39 0.25796 -0.1614
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The next thing to do is to move our segment of line profile along by one wavelength
bin and calculate the slope again. We then repeat this process through the whole of
the profile and this entire operation is done with phenomenal ease by clicking on
your first calculated slope value and dragging the mouse down to the bottom of the
data set. Now simply use the ‘fill down’ operation on your spreadsheet to calculate all
remaining slope values as shown in Fig 5.11b.

Now use the ‘average’ or ‘mean’ function on your spreadsheet to determine the
central wavelength of your first line profile segment as show in Fig 5.11c and
again click and drag the mouse down, and use the ‘fill down” operation to deter-
mine the central wavelengths of all remaining line profile segments as shown in
Fig 5.11d.

You now have two new columns of numbers; the central wavelengths of successive
line profile segments together with the gradients of these segments. If you run your
eye down the gradient column, you'll see that an initially large negative value gets
smaller and at some point it ‘flips over’ and becomes positive as shown in Fig 5.12.
This is the point you’re looking for—the limit of the line profile wing. As you can see
in this case it lies at around 6571.6 A.

Finally, Fig 5.13 shows what a plot of the slope of the line profile looks like and
confirms our estimate of the wing limit.

You may need to experiment with the number of data points which you use in each
line profile segment but it’s very important that these points cover as small an interval
on the line profile as possible. This will enable you to monitor the gradient of the line
more closely; theoretically you could use just two consecutive points, but this may
result in too much fluctuation in the gradient of the line. If there is an obvious slope
in the continuum across the line profile then use the ‘slope’ function to determine the
gradient of the continuum on either side of the line. Take an average to determine
the continuum slope across the width of the line and in your plot of line gradient
vs. wavelength, read off where the plot reaches this value. This may be a negative or
positive value depending on the slope of the continuum.
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[ A | B c D | E F
77 6570.78 4.74E-02 6571.092 -0.03097
78 6570.85 4.38E-02 6571.161 -0.03847
79 6570.92 363E-02 6571.23 -0.05018
80 6570.99 3.01E-02 6571.299 -0.05964
81 6571.06 3.07E-02 6571.368 -0.05974
82 6571.13 3.70E-02 6571.436 -0.04827
83 6571.2 3.84E-02 6571.504 -0.02725
84 657126 344E-02 6571572 -0.0017
85 6571.33 2.62E-02 6571.641 _0.024901
86 65714 196E-02 657171 0.049023
87 6571.47 9.12E-03 6571.779  0.06527
88 6571.54 -1.80E-04 6571.848 0.066663
89 657161 1.93E-03 6571.917 0.04948
90 657168 1.33E-02 6571985 002576
91 6571.74 2.42E-02 6572.053 0.010651

Figure 5.12. Looking down columns D and E, we see that between 16571.572
and 16571.641 the gradient flips over’; i.e. changes from negative fo positive. In
doing so it passes through zero at around A6571.6 and this marks the limit of the line
profile wing.

This method works pretty well for spectra which are reasonably ‘clean’ and where
a line is strong compared to the neighbouring continuum. The method is harder to
use when the line is relatively weak compared to a ‘noisy’ continuum but at least it
can give an estimate of the overall width of the line.
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Figure 5.13. (a) A plotf of the line profile’s gradient vs. wavelength. The zones
marked A, B, C and D correspond to similarly marked zones on the line profile plot

in (b).
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Figure 5.13. (Continued)

* Spectral lines have a characteristic ‘shape’ which is called the line profile.
* Line profiles are broadened primarily by four basic processes.

* Natural line broadening and pressure broadening tend to affect the line profile
wings.

¢ Thermal and turbulence broadening tend to broaden the line profile core.



Stellar Spectra and
That Famous
Mnemonic

Sooner or later, every amateur astronomer gets to know about the spectral classes
of stars and that the letters which represent the spectral classes; OBAFGKM, can be
remembered with that famous mnemonic; ‘Oh Be A Fine Girl Kiss Me’. In fact every
self-respecting astronomer should ask the question; “‘Why such an odd jumble of
letters? Why not ABCD etc.?” I myself can’t remember asking such questions—well it
was a long time ago!

In this chapter we’ll learn something about the history of why the spectral sequence
got to be this way but first we need to have a look at why stellar spectra are the way
they are. This, as you might expect involves looking at the physical processes going on
within the surface layers of stars.

~Y1Te AS daale oelal~-Y4d-~

Take a look at any star on a dark clear night; it appears as a tiny yet intense point of
light and you tell yourself that the light which you are seeing began its journey many
years ago because that’s how long it’s taken that light to travel across the light years
of space. The story of that light is in fact even more remarkable; the light you see is a
stream of photons which pass through the lens of your eye to the retina. Since leaving
the star, the photons have dodged interstellar dust grains, comets in the Oort cloud,
Kuiper belt objects, planets, asteroids and molecules in the Earth’s atmosphere. It’s
been a tough journey but compared to what happened before it left the star, pretty
easy really.

These photons started their lives as gamma ray photons deep inside the star’s core;
they then had to make their way through the hotter deeper denser layers of the star,

&
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constantly being absorbed and re-emitted by intervening atoms. This they did in a
random walk fashion which took them millions of years; this ‘walk’ takes its toll and
by the time they reach the outer layers of the star, they have lost a lot of their energy
which itself has been used to help heat up the vast body of the star itself. As they near
the surface of the star they have become photons of visible light and this is where their
journey gets really interesting.

Meanwhile, back in your backyard, you've set up your spectroscope in order to
acquire a spectrum of the star which you see consists of a continuous band of colour
crossed by dark lines. The band of colour which is called the continuum clearly results
from those photons which have made it and left the star’s surface. As for the dark
lines—the absorption lines, well clearly something has happened to them. Immediately
you recall the work of Kirchoff and Bunsen which we described back in Chapter 2;
an absorption spectrum is produced when a continuous spectrum is made to shine
through an intervening layer of cooler gas. What chemical elements the gas is made of
will determine where the absorption lines are. In the case of our star, the continuum
must come from the denser deeper hotter layers, while the absorption lines are caused
by cooler thinner gas in the star’s surface layers. This was the initial idea as to how
absorption lines get formed in stellar spectra; the layer of cooler gas which does the
absorbing was called the reversing layer. Nowadays ideas or models (astrophysicists use
the laws of physics to construct model stellar atmospheres) are a bit more sophisticated
than this simple model though in many ways the basic idea is still the same. We can
also avoid getting involved in some serious mathematics by simply thinking about
some of the things that could have happened to our lost photons within these outer
layers of a star.

If it were possible to send a probe carrying a spectroscope deep down inside the
atmosphere of a star, we would find the spectrum produced by these deeper layers
became increasingly like that of a perfect black body. It’s when we approach the surface
that ‘imperfections’ appear in this otherwise almost perfect spectrum. Absorption lines
are of course one form of imperfection but there are some processes which can knock
out whole chunks of the continuum.

Photoionisation

As before, let’s stick with hydrogen to keep things as simple as possible. Hydrogen
atoms with their electrons in the #n = 2 energy level can absorb photons at selected
wavelengths to give us the Balmer series of absorption lines in the visible part of
the spectrum. Shorter wavelength photons will send the electrons to ever higher
energy levels within the hydrogen atoms but a photon at A3647 will send an elec-
tron from the n = 2 level out into the ‘free world, i.e. it will ionise a hydrogen
atom from this level. In fact, all photons with wavelengths shorter than 13647 will
ionise hydrogen atoms which are in the n = 2 excited state. Another way of stating
this is to say that these hydrogen atoms are potential targets for photons coming
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up from the star’s interior—and a direct hit means of course that the photon is
destroyed!

A photon with just about the right kind of energy to just about ionise one of these
atoms in a sense ‘sees’ an approaching atom as a big target. Photons of higher energy;
i.e. shorter wavelength ‘see’ the atoms as ever diminishing targets so as the wavelength
decreases, more and more of the photons get through. The result is that, particularly
for hot stars which radiate plenty of light at the short wavelength end of the spectrum,
the continuum rises gradually as we head towards this region but then drops suddenly
as photons at just the critical wavelength get absorbed by the hydrogen atoms. This
catastrophic drop in the continuum is called the Balmer jump and sometimes the
Balmer discontinuity. The continuum then recovers and rises again as we move away
from the critical wavelength and into the ultraviolet. The result is a saw-tooth notch
cut out of the otherwise smooth continuum. At 3647 A the Balmer jump is situated in
the blue-violet part of the spectrum; hydrogen atoms in the # = 3 excited state can be
ionised with photons at 18212 which is in the near infrared part of the spectrum. This
is the Paschen jump which corresponds to the Paschen series of lines in the infrared.
The piece of spectrum from the Paschen jump to the Balmer jump is often referred
to as the Paschen continuum just as the continuum to the short wavelength side of the
Balmer jump is referred to as the Balmer continuum.

Photoionisation of hydrogen is the main cause of continuous absorption in hotter
stars. The higher temperatures in the outer layers of these stars causes most of the
hydrogen atoms there to be in an excited state with the electrons in the n =2 or
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Figure 6.1. The effect of fransition ‘jumps’ on a star’s continuous spectrum; the
dotted line approximates a black body radiation curve for the femperature of the star.
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higher levels. For cooler stars most of the hydrogen atoms are in the ground state
with the electrons in the n = 1 level. These atoms can only be ionised by ultraviolet
photons so photons in the optical part of the spectrum are spared. Similar jumps can
occur due to other elements but because of the overwhelming dominance of hydrogen
in stellar atmospheres, the effects of these are usually quite small.

The Negative Hydrogen lon

Hydrogen is simple; its atoms consist of a single positively charged proton together with
a single negatively charged electron. However, hydrogen atoms can and do sometimes
have two electrons; they are then called negative hydrogen ions and are written H™.
This might seem at first a little bizarre unless you are a chemist but it turns out that the
electric field of the hydrogen nucleus is not totally screened off by the single electron
and it’s possible for the atom to capture a second electron. This electron is however
only weakly bound and it doesn’t take much energy to remove it; in fact only 0.754 eV
which can be provided by photons with a wavelength shorter than about 116,450.
This wavelength is well into the infrared and so clearly all visible light photons will
remove the extra electron (the term used here is dissociation rather than ionisation). It
also means that H™ions can only exist in the atmospheres of cooler stars because the
higher temperatures in hotter stars will quickly dissociate any H™ ions which form.

Photoionisation of neutral hydrogen resulted in the removal of a saw-tooth shaped
piece of continuum; with photodissociation of H™, the effect is a bit different. Ab-
sorption of photons begins gradually at 116,450 and gradually increases as we go
to shorter wavelengths until the absorption peaks at about A8500. Absorption then
decreases gradually towards shorter wavelengths and the overall result is a ‘saucer
shaped’ swathe removed from the continuum.

The dissociation of the H™ ion is clearly a form of bound—free transition; however,
just as comets can orbit the Sun on open-ended parabolic and hyperbolic orbits, it’s
possible for an electron to orbit a neutral hydrogen atom in the same way. While the
electron is doing this, it can absorb an incoming photon which sends it into a different
hyperbolic orbit. The incoming photon has then been lost in a free—free transition.
This form of free—free transition can also happen to electrons which are having close
encounters with other kinds of atoms. The effect of these free—free transitions is
difficult for professional astronomers to calculate, but they shouldn’t concern amateur
spectroscopists too much due to the fact that their greatest effect is in the infrared,
because free—free electron transitions tend to involve exchanges of small amounts of
energy.

Broadly speaking then, hotter stars suffer continuous absorption in their spectra as
a result of photoionisation of neutral hydrogen in their atmospheres. In cooler stars
(this includes the Sun) the presence of negative hydrogen ions is the main cause of
continuous absorption.

Now for the absorption lines; clearly in order for absorption lines due to some chemical
element to be present in the spectrum of a star, the element has to be there in the
first place. It would then seem natural to suppose that the more abundant a given
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element was, the stronger its absorption lines would be. Well not necessarily! Let’s
see why.

It’s safe to say that hydrogen is abundant in the atmosphere of every star (though
some stars are known to be hydrogen deficient) and its presence is revealed by the
Balmer lines in the optical part of the spectrum. To make a Balmer line we need not just
any hydrogen atom but a hydrogen atom with its electron in the n = 2 level. When
hydrogen is cool the electrons stay in the n = 1 or ground level, so cool hydrogen
cannot make Balmer lines even if there are vast amounts of the stuff present. Heat
the hydrogen up and thermal excitation makes the electrons migrate up to the next
level and by the time the gas reaches a temperature of 10,000 K, the n = 2 level has
become maximally populated. Hydrogen at a temperature of 10,000 degrees then is
the stuff for making Balmer lines and it is no coincidence that 10,000 degrees is the
temperature in the surface layers of stars of spectral class A. Spectral class A stars
have the strongest Balmer lines in the entire spectral sequence; cooler stars have fewer
and fewer hydrogen atoms in the correct state to produce Balmer line absorption
and so the lines become weaker. If the hydrogen heats up to higher temperatures,
the electrons migrate to higher energy levels—the Paschen lines in the infrared will
become stronger at the expense of the Balmer lines. Eventually the hydrogen will
become largely ionised and all hydrogen absorption lines will fade as they do for the
very hottest stars.

Fig. 6.2 shows how the n = 2 level in hydrogen becomes increasingly populated as
the temperature rises. This plot was computed using two fairly involved equations;
one is called Boltzmann’s equation and this gives the number of atoms in the n = 2
level as a fraction of all the neutral atoms, in terms of the temperature. The other
equation (even more complicated) is called Saha’s equation and this gives the number
of ionised atoms as a fraction of the total number of atoms, again in terms of the
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Figure 6.2. The fractional population of the n = 2 level for hydrogen as a function
of temperature; the population of this level by electrons clearly peaks around
10,000 K giving rise fo the strongest Balmer lines in the spectra of class A sfars.
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temperature. By combining Boltzmann’s equation with Saha’s equation it is possible
to calculate the number of atoms in any given level as a fraction of the total number of
atoms and this is what’s plotted here. Notice how the graph rises quickly for increasing
temperature and peaks at around 10,000 K; it then falls off more gradually for higher
temperatures. Full details of both Boltzmann’s equation and Saha’s equation can be
found in more advanced books.

All of this tells us two things; firstly that the earliest attempts at Harvard around the
turn of the nineteenth to twentieth centuries, to produce a meaningful and ordered
sequence for stellar spectra were based on the strength of the Balmer lines; spectral
class A came first because these stars had the strongest lines. Secondly (and this
was soon realised at Harvard), the strength of not only the Balmer lines but those
of any element is as much if not more to do with temperature than abundance or
amount of the element itself; this more than anything resulted in the letters of the
original Draper classification system which ran from A through Q to be rearranged
with some letters even being removed. The tireless efforts of Annie Jump Cannon
gave us the spectral sequence which we know and use today. The fact that it is a
sequence is very significant; it means that it is not just a ‘pigeon holing’ of stars into
different species but rather shows a steady progression of the nature of the spectra
as we go from one end of the sequence to the other. This is born out further by
the fact that the sequence does not simply ‘jump’ say from class A to class F; rather
there is a steady transition from A0 to Al to A2, etc. to A9 which is then followed
by F0. FO is in turn followed by F1, F2, etc. Many stars do have a similar chemical
composition and this is why temperature rather than chemistry is the key to the
spectral sequence.

Chemistry does have a role to play though; hydrogen is by far the most abundant
element coming in at about 75% of all atoms. Next comes helium at about 24% with
everything else making up about 1% of the chemical composition of many stars. If an
element is very rare then its presence is going to be very difficult to detect in stellar
spectra—lithium, the third element in the periodic table is a good example of an
element that is so rare that it is virtually not seen in stellar spectra at all. By contrast,
fairly common elements which themselves are common products of thermonuclear
fusion processes in stars will generally play a more significant role. Common elements
include oxygen, nitrogen, carbon as well as helium of course together with metals (as
defined by chemists) like calcium, magnesium, sodium and iron. All elements other
than hydrogen and helium are referred to as ‘metals’ by astronomers.

When hydrogen gets hot enough, it becomes ionised and plays no role in the
formation of absorption lines. With more complex atoms the situation is much more
interesting; in cooler stars they will be electrically neutral and transitions within
these neutral atoms will involve the outermost electrons. As temperatures rise, metals
will become increasingly ionised losing first one electron and then perhaps more,
so transitions now involve electrons from lower energy levels and these transitions
and the resulting lines are of course completely different to those from the neutral
atoms. Helium because of its relatively large abundance has a significant role to play
but because of the energy needed to excite and possibly ionise helium atoms, it is
very much restricted to the hot end of the spectral sequence. While lines of many
elements gradually put in an appearance as we move along the spectral sequence,
molecules of chemical compounds appear when we approach the cool end. Molecules
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don’t produce lines but rather bands in the spectra of cool stars and in fact by the
time we reach spectral class M, they are the dominant feature. Finally, there are stars
which don’t fit into to the main OBAFGKM sequence and the reason they don’t
is very often to do with chemical composition. So let’s have a look at the spectral
sequence in the light of what we’ve learned, particularly about the key role played by
temperature.

The first thing to notice is how the continuum changes as we move along the sequence;
not surprisingly for hot stars the continuum peaks in the blue or even the ultraviolet
part of the spectrum. This gradually shifts towards longer wavelengths as the tem-
perature lowers and by the time we reach spectral class M the continuum is peaking
in the infrared. Even though the spectra of stars have been degraded from the near
black body spectrum of their interior layers, this overriding character of a black body
spectrum stills remains. In fact it enables professional astronomers to theoretically
‘reconstruct’ the spectrum that a star would have if indeed it did shine as a perfect
black body and to calculate the temperature of such a ‘black body star’ This temper-
ature is called the effective temperature of the star and is often written as Tesr in the
literature.

Class O

The hottest class O stars (the very hottest ones are O5) have surface temperatures of
around 37,000 K and even by the time we reach the ‘cool’ end of this class we’re still
talking temperatures of above 30,000 K. At these temperatures most of the hydrogen
in their atmospheres will be ionised. Surprisingly though, lines due to hydrogen are
still there even if not very strong. The main reason for this is that the more hydrogen
atoms that get ionised, the more free electrons get ‘pumped’ into the surroundings.
Eventually thereisakind of ‘saturation’ effect (the correct scientific term is equilibrium)
and electrons can re-attach themselves to hydrogen nuclei where they absorb line
photons before they get thermally re-ionised.

The strongest lines in these stars’ spectra are those due to ionised helium. Ionised
helium or Hell has one electron removed and the result is that it behaves in many
ways like a hydrogen atom. The big difference is that the extra positive charge in the
nucleus means that the remaining electron is much more tightly bound than is the
case for hydrogen. A curious result is that an electron in the n = 4 level has roughly
the same energy as the electron in the n = 2 level for hydrogen and so transitions
which start from level 4 in helium produce lines with wavelengths very similar to the
Balmer lines for hydrogen.

Other lines in class O stars include those due to doubly and triply ionised
oxygen and nitrogen but overall the general appearance of a class O spectrum
is relatively ‘clean’. Well known examples of class O stars are A Orionis and S
Monocerotis.
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Class B

Pick almost any bright star in Orion (Betelgeuse excepted of course) and the chances
are that it’s of class B; this of course includes Rigel. Class B embraces a relatively large
range of temperatures from around 28,000 K at BO dropping to about 11,000 K at
B9. One result is that helium in their atmospheres is no longer thermally ionised.
Lines from neutral helium replace those of ionised helium; the result is a more com-
plex looking spectrum because as described in Chapter 3, neutral helium produces
two virtually separate groups of spectral series; these are the singlet series which in-
volve transitions between single energy levels and the triplet series whose lines are
essentially three very closely spaced lines. They result from transitions between lev-
els which are split into three, though as mentioned in Chapter 3, the lines are so
close together that they will simply appear as one line. Another thing to say about
the lines from Hel is that they fade as we move through the subdivisions of class
B. This is because optical lines result from transitions from the n = 2 level and
above and it takes relatively high temperatures to thermally excite helium to this
level.

Again, as we move through class B, the Balmer lines begin to strengthen. The
lowering temperature simply means that progressively less of the hydrogen atoms are
ionised and the n = 2 level becomes increasingly populated.

Class A

As described above the n = 2 level in hydrogen is as populated as it gets at about
10,000 K; the temperature of class AO stars. As we progress through the class the
Balmer lines inevitably fade but interesting things are starting to happen with what
the chemists call metals—sodium, calcium, etc.

One of the interesting things about going through the periodic table is that every
so often you come to what’s called a ‘noble gas’. In a sense helium is the first of these
which is why chemists place it in the same column as the others. Helium of course
has two electrons which if temperatures are relatively low, reside either in the 1s level
(if the electrons spins are opposite) or in the 1s level and one of the n = 2 levels if
the spins are the same. Successive elements fill the n = 2 level and become ever more
tightly bound to a nucleus with progressively increasing electric charge. By the time
we reach neon, the first of the true noble gases we have a tightly bound closed shell
of eight electrons in the n = 2 level. These electrons do a good job of screening the
nuclear charge. After this elements like sodium and magnesium have outer electrons
which benefit form this nuclear screening and are much less tightly bound. They thus
become ripe for ionisation at moderate temperatures. As we progress through the next
few elements, outer electrons become increasingly bound until the next closed shell
forms with argon. Once again the pattern repeats with potassium and calcium having
easily removed outer electrons.

So the middle section of the spectral sequence is really the metal zone. With the
higher temperatures of class A, metals like sodium and calcium are easily ionised.
However, in the case of one valence electron metals like sodium, removal of this outer
electron leaves an electron structure rather like that of neon; i.e. a tightly bound shell
whose individual electrons would require very high energies for their removal. This is



Stellar Spectra and That Famous Mnemonic 17")

also the case with doubly ionised two valence electron metals like calcium. Instead,
lines due to singly ionised metals such as Call begin to appear.
The classic A type stars are Sirius, Vega and Altair.

Class F

These stars span a relatively narrow temperature range from around 7000 K to around
6000 K. Lines due to singly ionised metals are still there and adding to the overall
complexity of the spectra are lines from neutral metals. So, for example the doublet
series from sodium which includes the D line make their appearance.

The Balmer lines are fading with the drop in temperature; electrons are dropping
down into the n = 1 level and in consequence the Balmer jump also declines.

A famous F5 star is Procyon.

Class G

The most famous class G star is of course our own sun with a surface temperature of
around 5800 K. Class G spectra are dominated at optical wavelengths by line series
from both neutral and ionised metals. The strongest lines in the Sun’s spectrum are
Fraunhofer’s H and K lines; a doublet line from singly ionised calcium.

Class K

By this stage temperatures have fallen to around 4000 K; too cool for metals to be-
come thermally ionised and so the spectra of these stars are dominated by lines from
neutral metals. At these temperatures some chemical compounds remain intact and
so evidence for the presence of titanium oxide (TiO) shows itself, not in the form of
lines but of shaded bands. The most famous K star is Arcturus.

Class M

With temperatures around 3000 K the cool end of the spectral sequence is dominated
by shaded or fluted bands due to molecules. As variable star observers know most red
stars are variable; red dwarfs show flare activity whereas red giants show variability
due to pulsation and indeed these stars are one of the main areas of amateur variable
star astronomy. Near maximum brightness, red giant variables can show emission
lines from the Balmer series. The whole of the next chapter is devoted to explaining
the mysteries of molecular spectra.

Others

There are some stars whose classification ‘hangs out’ on the side of the main spectral
sequence, essentially because of differences in chemistry; these are the carbon stars
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and the zirconium stars. ‘He’s not going to mention Wolf-Rayet stars’ I hear you say;
these are a bit special and we’ll deal with them later.

Class S

I remember many year ago when I first got interested in observing variable stars, one of
the first telescopic variables which I managed to locate and make visual estimates of was
R Andromedae. This star is actually the first star listed in the General Catalogue of Vari-
able Stars (GCVS) and itis a spectral class S star. This means that instead of its spectrum
(which would otherwise be very much like that of a typical red giant) being dominated
by bands of titanium oxide, there are instead bands of zirconium oxide (ZrO).

Class C (Formerly R and N)

Class M and S do have one thing in common, a relatively high chemical abundance
of oxygen. With some cool stars though carbon is more abundant and instead of
oxygen combining with metals to produce bands of metal oxides, carbon combines
with hydrogen and nitrogen to form simple carbon molecules which are seen as bands
of CN, CH, etc.

Class Land T

These are ‘newcomers’ in the spectral sequence and are used to classify very low
luminosity stars which are cooler than M (red) dwarfs.

Clearly all lines in stellar spectra will be subject to natural line broadening and also to a
greater or lesser degree of thermal broadening which is commensurate with their tem-
peratures. Another interesting feature which distinguishes giants and supergiants from
normal dwarf stars is the presence or lack of pressure broadening. Dwarf stars have
relatively dense atmospheres and as a result their lines show well-developed wings
which result from pressure broadening. By contrast, lines from giants and supergiants
which show no pressure broadening show evidence of enhanced line cores due to
turbulence in their vast convective atmospheres.

Rotating Stars

Anyone who has systematically observed sunspots knows that the Sun rotates about
once per month and it follows that one would expect other stars to rotate too. If a
spectroscope were directed towards the Sun’s limb which is rotating away from us
then clearly lines in the spectrum from this limb would be red shifted by the Doppler
effect. Conversely, spectral lines which come from the Sun’s other limb would show a
blue shift and finally those which come from the central part of the Sun’s disk would
show no shift at all because they’re moving across our line of sight.
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With stars the situation is a little different because the star cannot be seen as a disk,
so one can’t point a spectroscope at one of the star’s limbs. Nonetheless the star is a
disk and its spectral lines are a composite of light coming from the approaching and
receding limbs as well as from the central regions plus all other parts in between. The
result is that a line is spread out or broadened by rotation and what’s more, because
the line itself is the sum total of absorption at that particular wavelength, spreading
the line out in this way has the effect of weakening the line compared to how it would
be in the absence of rotation. For an absorption line the result is to make the line less
deep and for an emission line less tall, so an absorption line will have a washed out
or less contrasting appearance, while an emission line will appear more rounded and
less bright.

Lines have been observed particularly in hotter stars, which have this appearance
but the real indication that this is due to rotation is that the degree of broadening is
in direct proportion to the wavelength of the line, i.e. the longer wavelength lines are
wider. This comes from the basic equation for the Doppler effect which states that the
change in wavelength is directly proportional to the wavelength itself. It is also possible
using a little trigonometry to show that the line profile is somewhat dish shaped or
ellipse shaped for a star of uniform brightness across the disk, i.e. no limb darkening.
When limb darkening is present the centre of the line profile deepens relative to the
wings and the profile becomes parabolic. As described in Chapter 5 for other line
broadening mechanisms, these rotation line profiles would be convolved with the
usual Doppler broadened profile. One final thing; the effects of rotation will only
appear if the rotation rate of the star is sufficiently high and also if its axis of rotation
lies close to the plane of the sky; a star seen pole on will show no rotation effect.

Imagine an alien astronomical spectroscopist observing our sun from many light
years away; let’s see what the effect of its rotation on its spectral lines would be. The
radius of the Sun is 6.96 x 10® m and hence its circumference is 4.37 x 10° m. Its
equatorial rotation period is approximately 24.9 days; this equals 2.15 x 10°s. A point
on the surface has to travel one complete circumference in one rotation period; so
the equatorial rotation velocity is equal to 4.37 x 10°divided by 2.15 x 10° which
equals 2.03 km/s. If you plug this into the simple Doppler shift formula—Eq. (4.1)—
the wavelength shift at 16563 is equal to about 0.044 A. This means that at best our
alien astronomer would see the Hox line broadened by about 0.09 A due to the Sun’s
rotation. He’d probably quickly turn his attention (and expensive telescope time) to
observing spectral class A stars which are known to often have rapid rotation rates.

Amateur astronomers who have done CCD photometry or photoelectric photometry
know that to do the job properly you need to make observations through the so-called
standard Johnson filters. One of the main things which distinguishes one star in the
spectral sequence from another is the strength or brightness of the continuum in dif-
ferent regions of the spectrum; for example the hottest stars will peak in the ultraviolet
and will still be bright at blue wavelengths. By contrast, the coolest stars will peak in the
infrared with a relatively bright continuum at red wavelengths (not withstanding the
presence of many dark absorption bands). A relatively straightforward way to sample
the spectrum of a star is to determine its magnitude in different wavelength regions.
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To do this the light from the star is allowed to shine through one of the Johnson filters
before it either falls onto the CCD or the photometer sensor.

The Johnson filters for the optical spectrum are designated U, B and V which
stand for ‘ultraviolet, ‘blue’ and ‘visual), respectively. The visual filter has maximum
transmission at 15500 and covers the region of the spectrum to which the human eye
is most sensitive, i.e. the yellow-green region. The parts of the spectrum covered by
the ultraviolet and blue filters are centred at 13600 and A4500 respectively and they
sit either side of the Balmer jump. The end result of allowing the light from the star to
pass through one of these filters is a magnitude in exactly the same way as is ‘ordinary’
apparent magnitude and it is measured in exactly the same way. So for instance, a
hot blue star will be brighter in the blue part of the spectrum than a cooler yellow
star, hence a class O star will have a brighter blue or B magnitude than a class G
star. Indeed, the class O star’s B magnitude will be brighter than its own Visual or V
magnitude but by contrast the G star will have a brighter V magnitude and a fainter
B magnitude.

From these colour magnitudes, astronomers produce magnitude differences; U-B
and B-V for a given star. Each of these magnitude differences is called a colour index.
The very magnitude system itself is formulated so that stars of spectral class AQ have a
B-V colour index of 0.0 and so B—Vfor O and B stars will be negative whereas that for
spectral classes later than AO will be positive. Clearly, B—Vis closely related to spectral
class but what does this have to do with your spectra?

I'said at the beginning that starlight has a difficult journey, dodging amongst other
things interstellar dust. Some of that light doesn’t make it through the dust though
and blue light is particularly prone to being ‘knocked out’ by the interstellar medium.
Stars which are more distant will inevitably shine through more intervening material
and hot stars in particular (class O and class B) will have their copious supplies of
blue photons diminished. This in turn will affect their B magnitudes which in their
turn affect the B—V colour index. B will lose out and become fainter so its numerical
value will increase just as it does for ordinary apparent magnitude. This makes B—V
more positive—it’s as if our hot blue stars are behaving like cooler red stars. If the star
were shining through clear empty space, it would of course have its appropriate value
for B-V; let’s call this (B—V),. Because of interstellar absorption, however, what we
observe is a more positive value which we can just call (B-V). If we subtract (B-V),
from (B-V) we get a number which is always positive. This is written E(B-V) and
is called the colour excess. So interstellar absorption means that if you take spectra
of more distant stars, they will effectively appear redder than they should for their
spectral class and this effect is not surprisingly is called interstellar reddening. If you
think about it though this is the result of blue light being removed from a star’s
spectrum and so the term interstellar de-blueing might be more appropriate, though
this doesn’t role off the tongue so well.

A Word or Two About the

Just as soon as any amateur astronomer gets to know about the spectral sequence, he
or she gets to know about the most famous diagram in all of stellar astronomy—the
Herzsprung—Russell (HR) diagram. Indeed, our first acquaintance is likely to show
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the spectral sequence as forming the horizontal axis of the diagram with the hot
stars to the left and the cool stars to the right. The vertical axis shows some quantity
which measures the luminosity or true power output of the star and this is usually the
absolute magnitude. However, determining the spectral class of a star (let alone a large
population of stars) is not a trivial task. The important thing is that the horizontal
axis plots stars according to some quantity which represents their temperatures. As
we have seen, the spectral sequence is a temperature sequence hence its use in the HR
diagram.

There are two other quantities which can be used to effectively determine the
temperature of a star; one of these is the effective temperature and indeed this is
the quantity which would probably be used by a theoretical astrophysicist who was
interested in developing models of stellar atmospheres. Such an HR diagram would
then be known as a theoretical HR diagram. A much more common practise though
is to use the B—V colour index; this ‘spectrum snapshot” which of course is done
(relatively easily) using photometry rather than spectroscopy leads to what is known
as an observational HR diagram.

Photoionisation of hydrogen is the chief cause of continuum absorption in hot stars.

* The negative hydrogen ion is the chief source of continuum absorption in cooler
stars.

Line absorption (i.e. the formation of absorption lines) is as much if not more to
do with temperature than chemical composition.

e The Harvard spectral sequence is in consequence based on the temperatures of
stellar atmospheres.

Stellar photometry through standard filters provides a relatively straightforward
way to determine stellar temperatures using colour indices.

Interstellar absorption removes blue wavelength light from a star’s spectrum affect-
ing its colour indices and making it appear redder.



Cool but not
Smooth—The

Molecular Spectra /
of Red Stars

For my PhD I had to model the He line profile in the spectra of symbiotic stars; these
are interacting binary stars in which one of the components is a cool giant often of
spectral class M. The continuum in the vicinity of the Ho line was seemingly very
‘noisy’ in one or two of the spectra which I was using and I remember someone
at the time commenting that perhaps all the myriad spikes and dips weren’t in fact
instrumental noise but the titanium oxide (TiO) bands in the spectrum of the red
giant. I recall even then thinking ‘is the continuous spectrum of a red giant such
terra incognita that one cannot distinguish the absorption bands from instrumen-
tal noise?’ It’s true that in most books which list the spectral classes, the section on
class M can sometimes be almost dismissive with phrases like ‘dominated by bands of
titanium oxide and other molecules’ However, if you dig deep enough in the litera-
ture you’ll certainly find that much is known about the patterns of these mysterious
bands to the extent that even bands due to different isotopes of titanium have been
identified; even so it will probably be a struggle to identify individual bands in your
spectra.

A good start though might be to understand why molecules like titanium oxide
produce these bands rather than the relatively simple lines of atomic spectra. This is
mainly what this chapter is about, but another reason for doing it is that cool giants
more often than not tend to be variable stars; either irregular, semi-regular or Mira-
type variables. As such they are of course of huge importance to both amateur and
professional variable star observers. By contrast, you could get the impression that red
dwarfs, i.e. cool main sequence stars, are the ‘poor man’s end’ of stellar astronomy.
Their claim to fame though is when they spectacularly and very rapidly brighten as
flare stars. They too, like their big brothers have very complex spectra which include
bands due to molecules.
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Stellar Atmosphere Versus the

Temperatures in the outer layers of class M (and class S for giants) stars can drop below
the 2000 K mark and even at typical temperatures of 2500 to 3000 K it’s possible for
certain molecules to survive intact against thermal dissociation. What’s more, unlike
conditions in a typical chemistry lab experiment, densities, particularly in the outer
layers of red giants and even in red dwarfs are relatively low; these low densities
further help to prevent thermal dissociation of molecules by lowering the frequency
of inter-molecular collisions.

Cool giant stars have exceedingly complex looking spectra duelargely to the presence
of seemingly countless absorption bands due to molecules. These bands are often due
to molecules of titanium oxide (TiO) or maybe zirconium oxide (ZrO) which can
survive in the relatively low temperatures of cool giant stellar atmospheres. There are
also bands due to molecules like carbon monoxide (CO) and even water (H,O) and
then there are also odd things like CN and NH, etc. Besides hydrogen and helium,
elements which are relatively common in the outer layers of most stars are carbon (C),
nitrogen (N) and oxygen (O). Atoms of these elements can bond together to produce
structures which you wouldn’t find in a chemistry laboratory. In the chemistry lab
they are called radicals and the reason they don’t exist separately is again due to the fact
that densities in test tubes are relatively high and frequent collisions mean that they
either get dissociated or combine with other radicals to form complete molecules. In
the atmospheres of red giants though, the much lower densities ensure that collisions
are infrequent; these radicals are actually physically stable if left alone and so they
survive to produce their own molecular spectra.

The molecular bands themselves are each made up of a large number of closely
spaced individual lines which often crowd together on one side to form what is called
a band head. Large numbers of bands stretching across the visible spectrum amount
to literally millions of individual lines. This is clearly in stark contrast to the rel-
atively simple spectral series formed by electron transitions in atoms and the key
to understanding why this is so lies in learning what a molecule can do that atoms
can’t.

A molecule consists of two or more atoms chemically bonded together and to keep
things simple, we’ll stick to two-atom or diatomic molecules. Without going too much
into chemistry, the bond may be ionic which means that one atom has effectively lost
an electron leaving it as a positively charged ion. This electron has in turn effectively
been grabbed by the other atom turning it into a negative ion; the two ions are then
bound by their electrostatic attraction. Ionic bonds work best with atoms which have
one or two relatively loosely bound electrons surrounding a closed shell and those
which are just one or two electrons short of a closed shell. The classic case is sodium
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Figure 7.1. The two basic chemical bonds. At the top, ionic bonding is caused by
electrostatic attraction between two atoms (here sodium (Na)] and chlorine (Cl)); one
of which has lost an outer electron (sodium in this case). This electron in turn has been
captured by the other afom. At the bottom, covalent bonding effectively results from
afoms sharing their outer electrons; covalent bonds are usually weaker than ionic

bonds.

which hasa single valence electron outside of aneon closed-shell structure and chlorine
which is one electron short of a closed-shell argon structure. The ionic bond between
these two makes a molecule of sodium chloride of course. Elements like calcium and
magnesium with two outer valence electrons also make good ionic bonds as do most
elements which a chemist would describe as ‘metals’

The other main type of bond is acovalent bond; I remember at high school
they wouldn’t tell us all the details about this kind of bond because its explana-
tion only came with the aid of quantum mechanics and what’s worse the expla-
nation as such came in the form of certain terms in the mathematics. Basically
though the atoms share one or more pairs of electrons; a possible astronomical
analogy might be a close binary star with a common envelope and a culinary anal-
ogy might be an egg with a double yolk where the white of the egg represents the
shared electron cloud of the molecule. This is crude I know but it'll do for our
purposes.

With both kinds of bond it’s possible that one of the two atomic nuclei doesn’t
get shielded by the electrons as well as the other or looked at another way, the outer
electrons spend more of their time around one of the nuclei than the other. For a
diatomic molecule, which we can think of as a tiny dumbbell, the result is that one
end has a slight excess of positive charge and the other a slight excess of negative charge.
The molecule is thus said to be slightly polarised and becomes an electric dipole with
what’s known as a dipole moment. This dipole moment means that just as a see-saw
can be turned on its axis by lifting one end, a dipole can be turned on its axis by
applying an outside electric field and what better external field than the electric field
part of an incoming electromagnetic wave. Light can turn molecules and make them
rotate!
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Electric field Figure 7.2.
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i.e. an incoming
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Rotation

Molecules can rotate ‘end over end’ as it were but they can’t spin around the axis
joining the two atoms as shown in Fig. 7.3.

As with everything it takes energy to turn a molecule. If the energy is that of light,
then that energy is lost or absorbed just as it can be when light encounters atoms.
Molecules are tiny and are thus subject to the laws of quantum mechanics rather than
the ‘laws of see-saws’; a good way to think of this is that a given molecule can only
rotate at certain fixed discrete rates or frequencies and it cannot rotate at any frequency
in between. Each rotation frequency corresponds to the molecule having a different
amount of rotational energy; the higher the rotation rate or frequency, the higher
the energy. We can thus think of these rotation frequencies as rotation levels for the
molecule; the faster it rotates the greater the energy and the higher the level.

h

) A diatomic molecule

can rotate about these
two axes . . .
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I Figure 7.3. A
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Figure 7.4. Photons of successively higher frequencies (i.e. energies) are needed in
order to get the molecule rotating faster. The frequency difference between the
quantum mechanically allowed rofafion rates are the same.

Another feature of the quantum mechanics of rotating molecules is that they can
undergo rotational transitions by either absorbing or emitting a photon; however they
can only jump’ from one rotation level to another, one level at a time; this is in
contrast to electrons in atoms which can undergo upward or downward transitions
across several levels at once. For a molecule to go from its ground state, i.e. zero
rotation to the first rotation level, it must absorb a photon of frequency equal to that
of the first rotation level. To get to the next level it must in turn absorb a photon of
frequency equal to the next higher level and so on; so getting a molecule to rotate
faster means that the molecule has to absorb a succession of photons of increasing
frequency (i.e. shorter wavelength).

If we place the usual vast population of molecules of a given kind in an electro-
magnetic radiation field, then the molecules are going to start to rotate. To get them
rotating at the first frequency requires photons of the same frequency and so these
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Figure 7.6. A spectrum of pure rotation lines, if plotted in ferms of frequency rather
than wavelength would result in the lines being equally spaced. Plotted in terms of
wavelength, however, the lines would get closer together fowards shorter
wavelengths. In reality, the lines would be much closer together than is depicted here.

photons get absorbed; matching photons of higher frequency will raise the molecules
to the next rotation level and in doing so are absorbed too. This process results in pho-
tons at a series of frequencies which match those of the rotation rates of the molecules
being absorbed and producing a set of absorption lines. Unlike the energy levels in
atoms, the rotation levels for diatomic molecules are equally spaced in energy and
hence frequency, so a spectrum of these rotation lines if plotted as intensity against
frequency rather than wavelength would show the lines to be equally spaced. However,
if plotted in terms of wavelength which is the norm for astronomical spectra, the lines
would get closer to each other towards the shorter wavelengths.

So far, quite simple; a population of molecules which only performed rotation
transitions would produce a very simple spectrum indeed—a simple set of lines. At
this stage though things are rather academic because it takes relatively little energy to
get the molecules rotating and so pure rotation lines would only be seen in the far
infrared or the sub-millimetre region of the spectrum.

Vibration

Now for some fun! Our little dipoles besides being made to rotate by the electric field of
an electromagnetic wave can also be ‘squashed’ slightly along the line joining the two
atoms. The positive end of the dipole gets pushed slightly by the electric field, while the
negative end gets pulled; this brings the two (positively charged) atomic nuclei closer
together and the two atoms immediately push back. This sets up a tiny vibration along
the line joining the two atoms and yes, you've guessed it, the frequency of the vibration
is again subject to the laws of quantum mechanics. A vibrating string on a violin or
a guitar has a fundamental note plus a series of discrete harmonics or overtones and
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Figure 7.7. An incoming photon can ‘squash’ a diatomic molecule along the line
joining the two atoms as shown in ‘a’. The two positively charged atomic nuclei
briefly get closer and immediately push each other apart as shown in 'b’. This sets up
a vibration just like two weights at the ends of a tiny spring as shown in ‘c’.

so do diatomic molecules. Each of these vibration overtones or vibration levels as the
physicists prefer to call them, gives the molecule a slightly different amount of energy
and once again within a vast population, molecules would exist in various vibration
states or levels; there is even a separate quantum number to label these vibration
energy levels which not surprisingly is called the vibration quantum number n,,.

At first we might think that a molecule could undergo a transition from one vibra-
tion level to another as a result say of absorbing a photon of appropriate wavelength
and then within a vast population of molecules undergoing various vibration transi-
tions, the result would be a series of vibrational absorption lines. This doesn’t happen
however because when a vibration transition does takes place, it is always accompa-
nied by a rotation transition which as described above involves a jump of one and only
one rotation level. A large number of molecules which are all undergoing the same
vibration transition will be in different rotation levels and so will produce a whole
range of rotation transitions; in fact it’s easy to show that if a molecule had for example
five rotation states including zero rotation then the total possible number of different
transitions between two vibration levels is 8, i.e. (5 — 1) x 2. The transition from zero
to zero rotation is not allowed. Fig. 7.9 shows the different possible transitions and
clearly it’s exactly as if each vibration level is split into several sublevels, so that what
would otherwise be a single line resulting from one transition between two vibration
levels, now becomes split into several lines by the ‘rotation sublevels’

All of these vibration rotation transitions involve slightly different energies and
so the result is a series of closely spaced lines which converge together at the short
wavelength end as shown in Fig. 7.10. Though vibration levels involve more energy
than rotation levels, a set of vibration rotation lines by itself would still only be seen in
the near infrared and a final point is of course that because you can’t have a vibration
transition without a rotation transition, pure vibration lines are never seen. We now
begin to see where the complexity of molecular spectra comes from but there’s still
one more layer to add to this molecular spectrum cake.
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Figure 7.10. A single vibration rotation series [i.e. befween two vibration levels)
would produce a series of closely spaced lines which converge fowards shorter
wavelengths.
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Figure 7.11. A stylised (and very much simplified) electron vibration rotation
fransition series (i.e. a molecular band). The thicker lines represent the head of each
vibration rofation series, which themselves also get closer towards shorter
wavelengths to form the molecular band head.

Electron Transitions

Just as atoms make their spectra from electron transitions, molecules can undergo
electron transitions too and this takes vibration rotation lines into the visible spec-
trum league. Again, as with atoms, electron transitions by themselves would produce
a simple series of lines but all the molecules within a large population which are un-
dergoing a given electron transition are in various vibration levels also undergoing
vibration transitions together with their accompanying rotational transitions. So each
electron energy level is effectively split into a series of vibration levels which in turn
are each split into a set of rotation levels. One single line for an electron transition
first becomes a series of lines due to the different vibration transitions; these converge
towards the shorter wavelengths. Each of these vibration lines in turn splits into a se-
ries of rotation lines again converging towards the short wavelength end. The overall
result is a series of many lines which crowd together towards shorter wavelengths—a
molecular band with a band head at the short wavelength end. Fig. 7.11 shows a very
simplified stylised version of a single electron transition split into five vibration levels
which in turn are split into several rotation levels. In reality, there would be many
more individual lines here and the crowding effect would be much greater.

Add to this band those produced by other electron transitions from the same kind
of molecule and the result is many overlapping bands making the visible spectrum
of a cool red star a sight to behold. Oh and yes of course, somewhere in there are
lines due to atoms too. Well there we are; we’ve made a molecular band, a series of
molecular bands and a whole molecular spectrum just from one type of molecule;
add extra molecules to the recipe and the saga of a cool star spectrum is complete. All
of this will probably not help you to sort out the ‘mess’ on your spectra but I hope
you now understand better where this mess comes from.

_

* Molecules exist in the relatively low temperatures of cool stars’ atmospheres.
¢ Diatomic molecules can rotate at a set of fixed rotation rates or frequencies.

* A rotation transition occurs when a molecule absorbs a photon of frequency equal
to that of the next higher rotation rate.
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* Rotation transitions involve very low energies so pure rotation spectra are not seen
in the visible part of the spectrum.

¢ Diatomic molecules can vibrate along the line joining the two atoms, at fixed vibra-
tion frequencies.

* A vibration transition is always accompanied by a rotation transition.
¢ Vibration rotation transitions spectra can sometimes be seen in the infrared part of
the spectrum.

e A transition between two electron energy levels effectively splits into a series of
vibration transitions each of which in turn splits into several rotation transitions.
¢ The result is a molecular band in which large numbers of individual lines crowd

together to form a band head at the short wavelength end.



Glows in the
Dark—Emission
Lines and Nebula

So far we’ve been dealing mainly with the continuum and absorption lines in the
spectra of normal stars. It’s time we looked at emission lines; some stars like Wolf-
Rayet stars and symbiotic stars together with Mira variables do produce emission
lines in their spectra. However, the best place to introduce our emission line studies
is gaseous nebulae and planetary nebulae; their spectra consist almost exclusively of
emission lines. They have also been for many years now, great favourites with deep
sky observers and so there is inevitably going to be great interest among amateur
spectroscopists who want to know how these beautiful objects work.

What Comes Down Must First

Emission of photons by atoms results from downward bound-bound transitions.
Before something can come down, in this case an electron, it must first go up. We’ve
already seen how thermal excitation in stellar atmospheres can populate higher energy
levels in atoms, making them suitable for producing absorption lines for a given series.
In the case of planetary and gaseous nebulae however the surrounding gas is relatively
cold and so the chances are that atoms which make up the gas will be in their ground
state, i.e. any electrons will be in the lowest energy levels. However, one thing that both
planetary and gaseous nebulae have in common is hot stars; planetary nebulae have
very hot central stars which are essentially the exposed reactor cores of former red
giants and gaseous nebulae often have young spectral class O stars embedded within
them.

%
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In Chapter 2 we talked about the black body spectrum and noted that as a body gets
hotter, the wavelength at which it produces maximum emission of energy gets shorter.
The physicist Wien in fact produced an extremely simple formula for calculating this
peak emission wavelength if you know the temperature of the body. This can be sim-
ply written as

Amax = 28978200/ T (8.1)

T is the temperature of the body in Kelvin and Ay is the wavelength in angstroms
which we’re looking for. We already know that a star doesn’t radiate as a perfect black
body but assuming that it does is not too bad an approximation. If we know the
effective temperature of a star, we can easily calculate the wavelength of maximum
energy emission from the star using Eq. (8.1) which by the way, is known as Wien’s
displacement law.

Let’s try it out with some typical stars starting at the cool end with a red giant
which has a typical effective temperature of around 3000 K. Eq. (8.1) will give us
28,978,200/3000 which equals 9659 A. This is well into the infrared which is typical
for cool red stars. Now let’s try the sun at 5800 K; this will give A, equal to 4996 A
which lies in the green part of the visible spectrum. It’s perhaps no surprise that human
eyes have evolved to be most sensitive to green light. A spectral class O star such as
would typically be found within a gaseous nebula has by Eq. (8.1), maximum energy
emission at 783 A which is well into the ultraviolet and finally the central star of a
planetary nebula, shining at a temperature of perhaps 100,000 K maximally blasts out
photons at 2280 in the extreme ultraviolet.

Sothehot stars within gaseous nebulae and planetary nebulae produce large supplies
of high-energy ultraviolet photons. These high-energy photons are the ‘stuff’ that
makes the electrons in the surrounding gas atoms ‘go up. Let’s check this to see what
kinds of photons are indeed needed to make electrons actually leave the surrounding
atoms, i.e. to ionise them. If a star produces photons which can ionise some of the
surrounding gas atoms, then it will certainly produce photons which are capable of
merely exciting others.

We'll start with hydrogen; both gaseous nebulae and planetary nebulae contain
large amounts of hydrogen. So let’s see what happens when hydrogen atoms in the
ground state get blasted with high-energy ultraviolet photons. Remember in Chapter 3
I gave a simple equation which converts electron volts (ionisation potentials are almost
always given in these units) to a wavelength in angstroms. This equation simply says;
divide 1.24033 x10* (you could write this as 12,403.3 if you like) by the number
of electron volts to get the corresponding wavelength. The ionisation potential for
hydrogen in the ground state is 13.598 eV and dividing this into 12,403.3 gives an
equivalent wavelength of 912 A. This means that photons with a wavelength equal to
or less than this will ionise hydrogen atoms and clearly both planetary nebula central
stars and spectral class O stars can do this.

Another common element in nebulae is helium and this has two electrons. The
ionisation potential for removing the first electron is 24.587 eV and that for removal
of the second electron is 54.416 eV. These ionisation potentials correspond to photons
at A504 and 1.228. Even for these short wavelengths a class O star will produce sufficient
photons to singly ionise helium and a planetary nebula star will produce plenty of
photons which are capable of producing doubly ionised helium or Helll.
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Other common elements found in nebulae are carbon nitrogen and oxygen and
with these elements there’s scope for high levels of ionisation. Photons at 2192 will
remove all four valence electrons from carbon atoms; 160 A will do the same job on
nitrogen and also on atoms of oxygen. So a planetary nebula will inevitably contain a
lot of highly ionised atoms; class O stars in gaseous nebulae won’t do quite so much
‘damage’ but there will still be a lot of ionisation going on in places like the Orion
Nebula. So what then?

The ionising effect of high-energy photons produces in a surrounding nebula a ‘sea’
of ions and electrons; physicists call this a plasma. Things don’t stay that way though;
the unlike charges of ions and electrons inevitably cause electrons to be recaptured
onto ions and then something wonderful happens. Hot stars supply the big bucks; the
hundred dollar bills in the form of high-energy photons which ionise the atoms, but
when an electron meets up with an ionised atom it often starts on a higher energy
level. It then ‘cascades’ (and the term for this process really is cascade) down the energy
levels maybe only one or two levels at a time. Each of these downward bound-bound
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Figure 8.1. The basic process which produces the emission line spectra of nebulae;
high-energy ultraviolet photons from hot stars ionise atoms within the nebula. Electrons
are subsequently recaptured by atoms, often on higher energy levels. A captured
electron then cascades down through lower levels emitting a series of optical emission
lines.
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transitions might produce emission of a visible light photon which can contribute to
an emission line in the visible part of the spectrum. This cascading process takes place
very rapidly in perhaps only 1078 s; the atom is then re-primed and ready for another
incoming high-energy photon.

The process of recapture of an electron by an ion is perhaps not surprisingly called
recombination and spectral lines which result from the ensuing cascade process are
called recombination lines. Clearly even with just the five main nebula constituents of
hydrogen, helium, carbon, nitrogen and oxygen, a very large number of line series
are possible when you consider the varying degrees of ionisation which are likely
to be present. The ionisation recombination cascade process depends initially on the
supply of high-energy ultraviolet photons from a hot star but as the process takes place
throughout the nebula, more and more of these high-energy photons get converted
into (larger numbers of) lower energy photons. In other words, high-energy photons
get degraded into low energy ones and what’s more as we move outwards through the
nebula away from the hot star, this degradation increases.

Let’s start near the surface of the hot star; a veritable blast of high-energy photons
almost immediately encounters gas atoms in the surrounding nebula. Suppose that
for a very brief instant, an oxygen atom has all of its eight electrons present; in the
next instant the ‘hail’ of photons will strip four of its electrons away to leave an OV
atom. It’s taken a 160 A photon to remove the fourth electron and when that electron
recombines with another OV atom it’s possible that we might get that photon back.
What’s more likely to happen though as a result of cascading is that it will be broken
down into several longer wavelength photons; however one of these photons could
still be of pretty high energy. Let’s keep this in mind but note most of all that relatively
close to the hot star is where the highest energy photons get degraded. So the highest
degrees of ionisation and any spectral series that result will take place close to the hot
star. This means also of course that the supply of the highest energy photons becomes
exhausted first and it turns out that once exhaustion ‘sets in), it happens very rapidly;
the photons don’t ‘fizzle out’ gradually. The result is that there is a relatively sharp
boundary within the nebula inside of which the highest ionisation levels will be found
and outside of which they won’t be found.

Now back to that pretty high-energy photon which of course will join the countless
others that themselves have been produced by downward transitions in highly ionised
atoms and those which are coming from the star itself. These ‘pretty high energy’
photons will cause atoms to have lesser degrees of ionisation such as OIV, OIII, etc.
Once again recombination followed by cascade means that they in their turn become
degraded into still lower energy photons. So as we move out through the nebula, we
see a gradual decline in the population of the highest energy photons and a relative
increase in the number of lower energy photons.

Now let’s go back to the surface of the hot star; besides the high-energy photons
there will of course also be plenty of lower energy ones. These won’t have any effect
on those atoms and ions which have high ionisation potentials but they will be able to
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ionise hydrogen atoms provided their wavelength is less than 912 A. Recombination
here can result in Balmer emission lines in the visible part of the spectrum. The
difference though is that the supply of these kinds of photons is constantly being
replenished by degradation of higher energy photons so they are not confined to the
region close to the star. The result is that ionisation of hydrogen can take place more
or less throughout the nebula. So summarising, lines which are due to high levels of
ionisation come from regions close to the hot star whereas lines requiring less energy
are spread more or less throughout the nebula.

The effect of this can be seen by producing a spectrum of a planetary nebula without
using a slit in the spectroscope. The result is a series of separate images of the nebula
each corresponding to one of the brightest lines in the spectrum. The apparent size of
each image depends on the line producing it; the smallest images come from the highest
ionisation lines. The ionised zone for a given element or ion is often referred to as the
Stromgren sphere for that element. The word sphere is perhaps a little inappropriate
because many planetary nebulae for example are known to be not spherical but ‘hour
glass’ shaped and gaseous nebulae are generally anything but spherical.

To ionise hydrogen atoms which are in the ground state (i.e. with their electron in the
#n = 1level), photons with a wavelength equal to or less than 912 A are necessary and
these will be plentiful in the radiation field within a planetary nebula or a gaseous
nebula. These photons make up what is called the Lyman continuum. What happens
next is interesting and revealing; when recombination takes place the electron will
probably start on a higher energy level. It could go straight back down to level 1 of
course and this would just give us back our original photon though this photon will
almost immediately get absorbed by another atom, so Lyman continuum photons will
never escape the nebula.

Those electrons which do recombine on a higher energy level will cascade very
rapidly down the lower levels and will eventually reach level n = 1 again because this
is the ‘natural’ state for hydrogen at the temperatures which exist within nebulae.
The final cascade jump may well be from level n = 2 to n = 1; this will produce a
Lyman o photon at A1215. This photon has nowhere to go; its wavelength is too long
to ionise other hydrogen atoms. It can only excite hydrogen atoms back up to the
n = 2 level which then almost immediately de-excite and our poor Lyman « photon
is back on the street as it were. After being scattered like this many times it can and
does eventually escape from the nebula, to be observed together with its buddies as a
Lyman o emission line in the ultraviolet part of the spectrum.

The final cascade jump may be between the n = 3 and n =1 levels; in this case
we get a Lyman 3 photon at A1025. Again this photon can excite a hydrogen atom
back up to the n = 3 level but this time there is a chance that it will cascade in
two jumps; firstly from n =3 to n = 2 giving an Ho photon, and secondly from
n = 2to n = 1giving a Lyman « photon which can eventually escape. So in the long
run, Lyman 3 photons don’t get away but get degraded; the same thing applies to
Lyman vy and other photons in the Lyman series. The only thing that can change
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Table 8.1 The theoretical Balmer decrement; the
relative intensities of the Balmer lines on a scale
where H3 equals 10, are given for case A and case B
recombination in nebulae.

AA) Case A Case B
Hp 4861 10 10
Hy 4340 5.76 5.1
Hb 4101 3.74 3.1
etc. 3969 2.55 2.06
3889 1.82 1.43
3835 1.36 1.05
3797 1.05 0.79
3770 0.81 0.59
3750 0.65 0.46

this is if the hydrogen in the nebula is thin; i.e. of low density. In this case Lyman
line photons can escape. Recombination which takes place in a nebula which is dense
enough to prevent Lyman line photons (except for Lyman «) escaping is called case
B recombination. When the nebula is of low enough density that Lyman photons can
escape, the process is called case A recombination. For case B recombination the nebula
is basically opaque to Lyman line photons which in consequence get absorbed and
degraded. Another way that astronomers describe this is to say that the nebula is
optically thick to Lyman line photons, whereas for case A recombination the nebula is
optically thin. These terms are used widely in astrophysics to describe the absorbing
properties of any optical medium. If a medium strongly absorbs radiation of a given
wavelength then it is optically thick at that wavelength; if it’s optically thin the radiation
gets through.

Iremember at high school looking through alaboratory spectroscope at an emission
line spectrum of hydrogen. One thing I noticed was that the lines seemed to start off
bright at one end of the spectrum but then gradually got progressively fainter. I noticed
the same thing again in the physics lab at university but no explanation ever seemed to
be offered. It wasn’t until years later when reading astrophysics textbooks and research
papers that I came across the term Balmer decrement and realised that this referred
to the decreasing intensity of the Balmer lines as you move away from the He line
towards the blue end of the spectrum.

The way that the Balmer decrement is usually defined is to give the intensity of the
HJ3 line a value of 10 and then scale the intensities of the other lines accordingly. The
Ho line is often so strong that lines further up the series would have very small values
indeed if the Hox line were used as the standard. The set of ratios which comes from
this scaling procedure (i.e. Hy/Hf3, H6/H, etc.) is what is actually referred to as the
Balmer decrement. In the 1930s, astronomers went to a great deal of trouble to calculate
the values of the Balmer decrement ratios for a given situation. The calculations were
extremely tedious but the results matched very well the observed Balmer decrement
for planetary nebulae provided you assumed that the nebula was dense enough for
case B recombination to dominate. Table 8.1 lists the ratios for the Balmer decrement
for case A and case B recombination and these are plotted in Fig. 8.2.
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Figure 8.2. A plot of the relative infensities of the Balmer lines in a nebula spectrum
for case A and case B recombination. The actual ratios of the line intensities relative
to that for the HP line are collectively known as the Balmer decrement.

It’s possible to see how this decrease in line intensity comes about without going into
the maths but if you want to calculate the actual intensity ratios, you’ll have to do the
tedious calculations yourself. Balmer emission lines result from electron transitions
which end on level n = 2. Take first an electron in level 3; this can drop down to level
2 to give us an Hx photon. Now take an electron in level 4; this can drop straight
down to level 2 to give us an Hf3 photon but it may also drop first to level 3 (giving a
Paschen o photon in the infrared) and then drop to level 2 to give another Hx photon
to add to the collection. Again, starting at level 5 a straight drop will give us Hy but
there are now also the following possible jumps:

Level;
5 4 — 3 — 2
5 — 4 — 2
5 3 — 2

The top sequence gives an « photon of the Brackett series plus a Paschen o photon
and yet another Hoe photon. The middle series gives Brackett o and another Hf3
and the bottom series gives Paschen 3 and another Ha. Try working out for yourself
the possible transitions which can take place from level 6. Now imagine the usual
vast population of atoms with all these kinds of transitions taking place; it’s clear
that there will always be a relatively high number of Hx photons produced together
with a correspondingly smaller number of H3 photons and a smaller still number
of Hy photons, etc. So there you have it; the Balmer decrement without the tedious
calculations!
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Yet More Photon

So far we’ve seen how Lyman photons fail to escape from a sufficiently dense nebula
but get absorbed and recycled into other lower energy photons. The fact that nebulae
also contain significant amounts of helium, carbon, nitrogen and oxygen mean that
a huge variety of electron transitions gives rise to an equally huge variety of photons
flying around within the nebula. Some of these too get recycled; the most famous
example of this is the Bowen fluorescence mechanism after the British astronomer 1.S.
Bowen. This is restricted to planetary nebulae and also active galactic nuclei (AGNs)
because the process starts with doubly ionised helium or Helll and class O stars in
galactic nebulae are not hot enough to produce this. Recombination of Helll gives
rise to emission lines from Hell and the final cascade drop takes the electron from the
n = 2 level to the n = 1 level. The resulting line for this transition has a wavelength
of about 304 A and incidentally the transition which takes an electron between the
ground state and the next level up in any atom produces what’s called a resonance line.
By a pure coincidence, the wavelength of this resonance line for Hell almost exactly
matches that of a photon which will take an electron in the 2p level of doubly ionised
oxygen OIII up to the 3d level (note here the I selection rule is obeyed). Exact matching
doesn’t matter here because motion of the atoms within the nebula mean that once
again our old friend the Doppler effect comes into play ensuring that an exact match
can and does happen. So these photons get absorbed. They can then cascade down
through the sublevels of the n = 3 level to produce a series of lines in the ultraviolet.
For the amateur spectroscopist however the important bit is the final drop from the
3s to the 2p level; this emits a photon at about 1374 and by yet another coincidence
this photon can excite an atom of doubly ionised nitrogen NIII from the 2p to the 3d
level. This time however the transitions through the n = 3 sublevels together with the
final drop from 3s to 2p produce a series of lines in the approximate range A14100 to
4600 which of course lie in the blue part of the visible spectrum.

The most famous piece of spectroscopic history associated with gaseous nebulae and
planetary nebulae is of course that of the bright green emission line at A5007. As is
well known this line was a mystery for many years and indeed was thought to come
from an unknown element which was named nebulium. The fact that most of the
empty slots in the periodic table of the elements were rapidly filling up made it clear
that there could be no mysterious nebulium. Quantum mechanics held the answer
but it was I.S. Bowen again who in 1927 realised that this line together with one or two
other very prominent lines were the result of forbidden transitions in doubly ionised
oxygen, i.e. OIII (the standard notation for any forbidden transition is to put square
brackets around the symbol for the element or ion in which it takes place; in this case
we would put [OIII] A5007).

Neutral oxygen has two electrons in the 1s (n = 1, [ = 0) level, two electrons in
the 2s level and four in the 2p (n = 2, I = 1) level. In doubly ionised oxygen two of
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the 2p electrons have been removed and in the high-energy radiation field of say a
planetary nebula this is caused by photo ionisation. OIII thus effectively becomes a
two-electron atom with the 1s and 2s electrons bound tightly to the nucleus. As we
saw towards the end of Chapter 3, a two-electron atom can produce spectral line series
which are either single (singlets) or triple (triplets); furthermore, the lowest energy
state for the 2p electrons is the triplet 2p level because with both electrons optically
active, there is less shielding of the nucleus. Remember also that electron transitions
which jump across’ from a singlet level to a triplet level are forbidden by quantum
mechanics. The reason for this is that with both electrons in singlet levels, one of the
electrons is spin up and the other spin down; jumping across to a triplet level may
involve a ‘spin flip’ whereupon both electrons end up with the same spin and this
violates one of the selections rules. In particular, a transition from the 2p singlet level
to the 2p triplet level would in fact be doubly forbidden because not only is there a
potential spin flip but also the I quantum number would not change and as we recall,
for a permitted transition this must change by 1. However as we know, the quantum
mechanical selection rules are not hard and fast; they do get broken and the conditions
within nebulae are just right for this to happen.

The ‘Shelf Life’ of an Electron

An electron absorbs a photon and jumps to a higher energy level; what then? In this
case, what goes up definitely comes down and down it does come in a very short time;
about 1078 s. This is the typical time which an electron spends in an excited state before
undergoing a permitted transition to a lower state. This ‘electron shelflife’ comes from
some equations worked out by none other than Albert Einstein and which involve
quantities which are called the Einstein probability coefficients. The derived times do
vary but 1078 s is very typical provided that the electron can leave the excited level by
a permitted transition. A level from which there is no escape other than by forbidden
transitions can hold an electron for much longer; say up to several seconds or even
several tens of seconds. This is an eternity in the subatomic world and such ‘long life’
levels are called metastable. The 2p singlet level in OIII is a metastable level; the only
way down is to the 2p triplet level and as we have seen this is a doubly forbidden
transition. It does happen in nebulae though so we need to investigate further. There’s
also another ‘agent’ at work here.

‘Rogue Electrons’

In any ionised gas, be it a planetary nebula or a hot stellar atmosphere, there will be
free electrons whizzing here and there. Sooner or later a free electron will encounter
an atom and as we have seen it may get captured by the atom. However, this doesn’t
always happen; the free electron may just have a close encounter with the atom and
lose some of its energy. This energy can excite an electron within the atom, raising it
to a higher energy level. This process is called not surprisingly, collisional excitation.
It can also do something else; an electron within the atom which is in an excited
state can actually have its excitation energy ‘robbed’ by the free electron. The atomic
electron drops to a lower level but there is no emission of a photon (the free electron
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has made off with this energy) and this process is called collisional de-excitation. In
the relatively dense conditions of a stellar atmosphere or for that matter a laboratory
experiment, collisional excitations are followed almost immediately by either colli-
sional de-excitations or indeed by emission or further absorption of photons. These
frequent collisional de-excitations are important if a previous collision has excited an
electron to a metastable level. Well before there’s any chance of a forbidden transition,
collisional de-excitation takes place.

In a nebula though things are different because the gas is of very low density and
though the radiation field is of high energy with plenty of ultraviolet photons, it too
is of much lower intensity than that within a stellar atmosphere. Photon-ionisation
followed by recombination is a pretty rare event for an individual atom but the nebula
is big so there are plenty of atoms undergoing these processes at any given time. An
OIII atom with an electron in the 2p singlet level could ‘sit there’ for quite a long time
before a photon excited the electron to a higher energy level or indeed it suffered a
collisional excitation from a passing electron. In time even its long shelf life will run
out and down it will drop to the 2p triplet level in a forbidden transition. The 2p
triplet level is of course three levels and so three forbidden transitions are possible;
one of these produces the A5007 line and another also previously mysterious line at
A4959. The third possible transition is virtually not seen because it involves the inner
quantum number j (see Chapter 3) changing by 2 which would break yet another
selection rule.

OIII is not the only source of forbidden lines in nebulae; they come from OI, OII
as well as ionised nitrogen (NII) and ionised sulphur (SII), etc.

Images of planetary nebulae suggest that they often have fairly sharp outer edges;
gaseous nebulae on the other hand are often seen to have edges which are diffuse. If
a nebula is relatively dense then the supply of high-energy photons will eventually
become exhausted; this happens over a relatively short distance giving the nebula
a sharp edge. The actual size of such a nebula is thus determined by the supply of
high-energy radiation and the nebula is said to be radiation bounded. The alternative
scenario would be for the gas in a nebula to be relatively thin; in this case the high-
energy photons keep on going but they have less and less target atoms to ionise. The
nebula simply fades away at the edges and is said to be matter bounded or sometimes
density bounded.

¢ Emission lines result from downward electron transitions.

* The high-energy radiation field within a planetary nebula or a gaseous nebula
contains large numbers of ultraviolet photons.

e Ultraviolet photons ionise atoms in a process known as photoionisation.
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* Recapture of an electron by an ionised atom is called recombination.

* Recombination usually takes place on a higher energy level which is then followed
by a cascade of downward transitions resulting in the emission of optical wavelength
lines.

* The overall result of photoionisation recombination is to degrade the ultraviolet
photons into lower energy optical photons.

¢ Electrons can be excited to higher energy levels by collisional excitation caused by
encounters with free electrons.

e Flectrons can also suffer collisional de-excitation which results in no emission of
photons.

e Excitation processes are rare for any individual atom but large numbers of these
processes are happening at any one time because of the large size of nebulae.

* Ifan excitation process puts an electron into a metastable level a forbidden transition
is more likely to take place before any further excitation or de-excitation occurs.
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Accretion disks are very familiar in astronomy these days; they are believed to exist
around black holes, both in binary systems and at the centre of active galactic nuclei.
They are also believed to form within many interacting binary stars; particularly
cataclysmic variables or CVs. What’s perhaps not quite so well known is that the hot
gases which make up an accretion disk can produce emission lines of hydrogen and
what’s more these emission lines can have very striking profile shapes. They are in fact
often double-peaked with what’s called a central reversal in between; they also have
broad extensive wings.

This chapter aims to do two things; firstly to give you an insight into astrophys-
ical modelling. By modelling the double-peaked line profiles from accretion disks,
astronomers can learn a great deal about cataclysmic variables. Secondly, accretion
disks are an excellent example of how the large-scale motion of material can have a
dramatic effect on line profile shapes.

Most professional astronomers at some time or other have a need to develop some
sort of model to explain what they see in their observations. The model may be that
of a stellar atmosphere or perhaps a model to explain the behaviour of bipolar jets.
The end result of developing a model will very likely be a computer program which
will enable certain quantities to be varied so that the model can better match the
observations; the matching procedure is actually called fitting and astronomers will
often talk about producing a model fit to the observations. The quantities which are
varied or maybe even just ‘tweaked’ are called model parameters and the set of all such

108



\1_0_9 Spectroscopy—The Key to the Stars

parameters is referred to as the model’s parameter space. A classic model program
which is freely available to all via the Internet is the Wilson—DeVinney program for
modelling the light curves of eclipsing binary stars.

Clearly any astrophysical model has to be firmly founded on the basic principles
of physics and this means that modelling is often out of bounds for many amateur
astronomers. However, if you feel you are up to it, there’s no law which says you're
not allowed to do this sort of thing. Indeed if you come across something during the
course of your spectroscopic observations which is unusual and puzzling, you will
inevitably be curious to know what’s going on. Be warned though, once you have
the beginnings of an idea it’s often the easiest thing in the world to sit down and get
carried away (I know, I've done it myself). You start to build into your model all kinds
of things which will make the model more realistic; for example if your model involves
the out flowing wind from a red giant star in a binary system, you say to yourself ‘ah
yes! The flow pattern of the red giant wind will swirl round due to the orbital motion
of the binary’. Then you try to model the effect of this swirling motion on the profile
of absorption lines which form as a result of a hot companion star shining through
the wind. Unless you're very clever (and I mean the genius premier league here) you'll
immediately be in serious guano as they say!

The rule with any sort of astrophysical modelling is to start very simple; our red
giant wind model for example would start with material which was flowing from the
star in straight lines. In this simple but not so realistic scenario it’s much easier for
example to work out the density and radial velocity of material in different regions
of the wind, which in turn makes it easier to work out how much of the light from
the hot star gets absorbed at a given wavelength. Once you've well and truly cracked
the simple version of the model then you can start to add another level of complexity.
Maybe though, doing this kind of modelling isn’t really your thing; even so, if at any
time you manage to secure some interesting spectra which you think might be of value
to the professionals, it’s always interesting to have some idea of the kinds of things
that they might do with your precious data.

The spectra of cataclysmic variables contain emission lines of hydrogen; i.e. the
Balmer lines which when observed at high dispersion are often seen to have very
distinctive profiles which are double-peaked with a central reversal in between and
broad well-developed wings as shown in Fig. 9.1. Their striking appearance virtually
demands that they be modelled and the consensus of opinion among professional
astronomers is that the source of these emission lines is the accretion disk which
surrounds the white dwarf in these binary systems. So let’s see if we can build a
simple model to represent the emission line profiles which are observed, based on the
assumption that they come from an accretion disk.

Another reason for doing this is to show that besides the main spectral line broad-
ening mechanisms which we met in Chapter 5 it’s also possible for line profiles shapes
to be profoundly affected by large-scale motion of material and the revolving hot gas
which makes up an accretion disk is a good example.

Let’s start simple; our accretion disk is a flat revolving disk of hot gas which as with
most other things contains plenty of hydrogen. The disk is revolving around a central
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Figure 9.1. A stylised double-peaked emission line profile of the kind which might
be emitted by the accretion disk surrounding the white dwarf in a cataclysmic binary.

star which might for example be a white dwarf. We could of course adopt a different
type of star; say a main sequence star or even a neutron star; however as we shall see
the model which we are going to develop can itself give us information on the type
of central star (this is one of the main reasons for doing this kind of modelling) so at
this stage it doesn’t matter. The emission lines themselves, i.e. the Balmer lines, are of
course recombination lines and so we need to get the hydrogen in the disk ionised.
There are at least a couple of ways in which this might happen; firstly as the gas falls
in the gravity well of the central star, loss of potential energy together with friction
and viscosity effects within the gas could raise its temperature sufficiently to ionise
the hydrogen. A second possibility is that ultraviolet radiation from the fast moving
material in the inner regions of the disk could photoionise hydrogen in the outer
regions just as hydrogen in a planetary nebulae gets ionised by ultraviolet radiation
from the central star.

Again in the spirit of keeping things simple, we’ll assume that the orbits followed by
the atoms within the disk are circular. We also assume that even though on a small scale
there will be encounters between atoms which will give rise to the above mentioned
friction and viscosity, overall the motion of an individual atom is controlled only by
the gravitational field of the central star. This in effect makes the atoms orbit just like
tiny planets and as the motions of our neighbourhood planets obey Kepler’s law of
planetary motion, we say that the orbital motion of the disk material is Keplerian; we
have a Keplerian disk.

m
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We saw in Chapter 6 that rotation of stars can cause their absorption line profiles to be
broadened due to the Doppler effect. For a revolving accretion disk, clearly the same
thing is going to happen but the difference of course is that a star consists of a more
or less spherical surface which is rotating whereas here we have a flat disk. Different
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Figure 9.2. A revolving accretion disk as ‘seen’ by a distant observer; emission from
one side of the disk is blue shifted while that from the other side is red shifted. Some
material on the near and far sides of the disk is moving across the observer's line of
sight and thus shows no Doppler shift.

geometry will cause the broadened line profile to be very different from that for a
rotating star. However, just as a star seen ‘pole on’ will show no line broadening due
to rotation, the same will be true of an accretion disk which is seen’ face on’; all the
material in the disk will be moving across our line of sight.

For an accretion disk which is presented more edge on, clearly one side of the disk
will be moving towards us while the other side moves away and some of the material
on the near and far sides of the disk will be moving across our line of sight as shown
in Fig. 9.2. So the first thing to say is that emission from one side of the disk will be
red shifted while that from the other side is blue shifted and in addition there will
be some emission which doesn’t show any shift. Emission lines which are produced
by the revolving disk material will of course be subject to thermal broadening and
there will almost certainly be some turbulence broadening too but for the moment
we’ll ignore these; they can as it turns out quite easily be incorporated into the model
at a later stage. So the Doppler shifts produced by the various parts of the disk will
be the main line broadening mechanism. If you think about it, each point on the
observed emission line profile will be the combined result of all the emission which
comes from the disk and which also has the same radial velocity. So the next thing
we need to think about is the distribution of radial velocity across the surface of the
disk.

Zero Radial Velocity—The Line Profile Centre

By convention, a disk which is seen face on has a tilt or an inclination of 0° while an
exactly edge on disk has an inclination of 90° and clearly the rotational line broadening
will be greatest for an edge on disk. So let’s imagine a disk with an inclination of 90°;
another reason for doing this is that in this case the orbital velocity at any point on the
disk actually equals the radial velocity and remember that radial velocities translate
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directly into wavelength shifts. Firstly, if we bisect the disk with a line pointing in the
direction of the observer as shown in Fig. 9.3, all material crossing this line also crosses
the observer’s line of sight. This material has zero radial velocity and so emission from
here is not Doppler shifted; it marks the centre of the line profile.

The Wing Limits

If we now bisect the disk with another line at right angles to the first line, then clearly
emission from material crossing this line will be seen to be either blue or red shifted
depending on which side of the disk it is. Note here though that the speed and hence
the radial velocity of orbiting material varies as we move along this line; stuff at the
outer edge of the disk will be moving more slowly and hence have a smaller Doppler
shift than material at the disk’s inner edge. In fact, the two points which are on this
line and at the disk’s inner edge will have the highest radial velocity of all and will
thus mark the wing limits of the line profile. This maximum radial velocity will be
determined by the radius of the disk’s inner edge and also the mass of the central star;
the higher the star’s mass and the smaller the disk inner radius, the higher the orbital
velocity and hence the higher the radial velocity.

There is yet again a simple plug in formula which we can use to work out what the
maximum orbital velocity for accretion disk material might be if we’re talking about
a cataclysmic variable with a white dwarf as the accreting star. This formula comes
straight from Kepler’s laws of planetary motion; it says that the orbital velocity which
we can call ‘v’ is simply given by

Gx M
R

Here G is the universal constant of gravitation and it equals 6.673 x 1071, M is the
mass of the accreting star and R is the distance from the star. Let’s stick with our CV
binary; we can take the mass of a white dwarf to be equal to the mass of the Sun which
is 1.99 x 10°° kg. A typical white dwarf has a radius of about one hundredth that of
the Sun; i.e. about 6.96 x 10° m. Let’s now assume that the inner edge of the accretion
disk is just about on the surface of the white dwarf so the inner disk radius equals the
white dwarf radius. Try plugging these numbers into Eq. (9.1); (don’t forget about the

(9.1)

V=

Figure 9.3. Orbiting disk material which crosses the horizontal line has a range of
radial velocities as indicated by the size of the arows; material at the disk’s inner
edge has the highest radial velocity.
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square root) the answer comes out at about 4400 km/s. At this velocity it’s probably
still okay to use the simple Doppler shift formula and if you do this for the He line
you'll see that the wing limits of the line profile will be shifted by about 100 A. Of
course the really neat thing to do is to determine the wavelengths of the wing limits
from your spectrum (see the method for doing this in Chapter 5); these then translate
directly into the radial velocity of material orbiting at the inner edge of the disk.

What you don’t get from Eq. (9.1) of course is the orbital velocity unless you know
for certain that the accretion disk is being observed exactly edge on; and it’s a pretty
fair bet that you don’t know this. The radial velocity ‘v’ is in fact equal to the orbital
velocity multiplied by the sine (remember sines, cosines and tangents from high school
trigonometry?) of the disk’s inclination angle. It’s clear though that a more edge on
disk will mean higher radial velocities and hence broader wings; the calculation which
we’ve just done probably represents an upper limit to the kind of radial velocities which
would be encountered in cataclysmic binaries which involve a white dwarf. This upper
limit results from an edge on disk, i.e. the inclination angle equals 90° and sin(90°)
equals 1. So for example, if the wing limits of your profile represent wavelength shifts
of only about 50 A then this means that the radial velocity is only about half that which
would be expected for an edge on disk. This means that we would have to multiply the
orbital velocity by a half to get the observed radial velocity. This means that the sine
of the inclination angle equals 0.5; sin(30°) equals 0.5 and so this gives us at least an
estimation of the orbital tilt of this binary system of about 30°—this is real amateur
astrophysics! Finally, as we’ll see below there’s also another check which we can do to
tell us whether the inclination angle of a binary system is low or high.

The Emission Line Peaks

The next thing to do is to start at a point on the horizontal line in Fig. 9.3, which is at
the outer edge of the disk and mark out points on the disk which have the same radial
velocity as this point. As we move away from the line we have to do two things to keep
the radial velocity constant; firstly we need to move either clockwise or anticlockwise
around the disk slightly. This by itself would lower the radial velocity but if at the
same time we move slightly inwards towards the centre, the slight increase in orbital
velocity will in turn slightly increase the radial velocity. This combination keeps the
radial velocity constant and enables us to trace out a curve of constant radial velocity
on the disk surface. Repeating this procedure systematically for successive points along
the line enables us to map out a whole series of constant radial velocity curves. This
striking pattern is shown in Fig. 9.4 and clearly resembles the pattern of field lines
produced around a bar magnet; indeed this pattern is sometimes referred to as a dipole
field pattern.

Emission from all the way along one of these constant radial velocity curves will
combine to produce one point on our emission line profile. Looking at the dipole
field pattern we can see that the physically longest curve is the one which sweeps
inwards from the outer edge of the disk. So we’d expect emission from this curve to
coincide with peak emission in the line profile and two such curves on opposite sides
of the disk give us the red and blue emission peaks in the profile. So in our model, the
emission peaks coincide with the radial velocity of material which is orbiting at the
disk’s outer edge and the wavelength shift of each peak can be used to determine this
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radial velocity. If we’ve already managed to estimate the inclination of our CV binary
from the wing limits, we can now use this to determine the orbital velocity of material
on the disk’s outer edge. Finally, by rearranging Eq. (9.1) we can even estimate the
radius of the accretion disk itself.

Building the Line Profile

Notice now that as we move from one of the peak emission curves towards lower radial
velocity values (i.e. towards the vertical line in Fig. 9.4), what would be longer curves
get cut off or truncated by the disk’s outer edge so their length decreases as we move
towards the zero radial velocity line. This results in lower emission values as we move
towards the centre of the line profile and this gives us our central reversal. Finally,
as we move towards the higher radial velocity region (by moving inwards along the
horizontal line in Fig. 9.4), the curves shrink rapidly making the line profile fall away
towards the wings. Fig. 9.5 shows the disk radial velocity pattern again with several
areas shaded. Similarly, shaded areas on the accompanying stylised line profile show
which parts of the disk contribute to which parts of the line profile.

If the disk is seen face on then obviously the dipole field pattern disappears because
all material in the disk has zero radial velocity. As soon as we tilt the disk the dipole
pattern appears but because the disk inclination is only slight, the range of radial
velocities in the dipole pattern is small. The line profile would be very narrow and
though technically double peaked, any central reversal would be extremely slight. As
the inclination of the disk increases the line broadens as the range of radial velocities
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increases. The difference in length between the disk outer edge radial velocity curve
and that for the zero radial velocity line also increases; this translates into a bigger
difference in the total emission from these curves and so the central reversal deepens
until at an inclination of 90° the central reversal is at its deepest and the line profile
has the broadest wings as shown in Fig. 9.6. Indeed the central reversal depth can be
used as a kind of check on the inclination of the binary system; a deep central reversal
strongly suggests that the binary is being observed more edge on. This is finally verified
by the peak-to-peak separation which is wider for a more edge on system.

Enhancing the Line Profile Wings
So far we have assumed that emission values are the same all over the disk or to

be more precise, the emission from every square metre of the disk’s surface is the
same. This means that emission vales are constant along any given constant radial
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velocity curve. Material orbiting within the disk gradually spirals inward; the exact
details of how this happens are still not fully understood but the process is relatively
gradual and results in a build up of material towards the inner regions of the disk.
More material means more emission per square metre and so to produce a more
realistic model emission values should rise as we move along a constant radial ve-
locity curve towards the centre. The overall result is that emission from the inner
regions of the disk will be enhanced. Again, looking at the dipole field pattern, it’s
clear that emission in the line profile wings comes predominantly from the inner
regions of the disk and so more material here means enhanced wings in the model
profile.

To calculate and plot model emission lines profiles like these obviously involves a lot
of work but just by using simple reasoning, we’ve managed to explain why emission
line profiles from accretion disks are double peaked and the wavelength separation
of the peaks depends on the radial velocity of material orbiting at the disk’s outer
edge. The limits of the profile wings are determined by the radial velocity of material
orbiting at the disk’s inner edge and the overall width of the line profile together with
the depth of the central reversal depends on the inclination of the disk to our line of
sight. We finally showed that as material ‘piles up’ in the inner regions of the disk, this
will produce enhanced emission in the profile wings.

The model which we’ve described was first developed by J. Smak in the late 1960s. The
central reversals in Smak’s model line profiles were relatively shallow and ‘U’ shaped
even when the binary system was assumed to be nearly edge on. The He line profiles of
cataclysmic variables were often seen to have deeper more V’ shaped central reversals
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and in the mid-1980s the astronomers Keith Horne and Tom Marsh developed a better
and more realistic model to explain this. The model line profiles shown in Fig. 9.6
were actually computed using the Horne and Marsh model.

One simple feature of Smak’s model is that the accretion disk gas is of low density,
notwithstanding the higher densities towards the centre. The significance of this is
that emission line photons which are produced within the disk can basically escape
unhindered; in astrophysics terminology we say that the accretion disk is optically
thin. Balmer emission lines produced within an optically thin gas would show a very
predictable Balmer decrement (the ratios of the intensities of the lines in the Balmer
series as explained in Chapter 8). Horne and Marsh realised that in the case of CV
spectra the line intensities decreased less rapidly (this is sometimes called a ‘flat’ Balmer
decrement) and the explanation for this is that the accretion disk material must be
relatively dense. Denser material means that emission line photons get trapped within
what is now an optically thick disk. Line photons do get out however, otherwise we
wouldn’t see the emission lines at all—so let’s see how they manage to escape.

Besides assuming that the disk material is relatively dense, we’re also going to give the
disk a finite thickness, though this thickness is still assumed to be small compared to
the diameter of the disk. This means that an emission line photon which is produced
within the disk will have to ‘dodge’ potentially absorbing atoms which will get in
its way, if it’s going to escape. In this sense the disk is behaving very much like the
photosphere of a star; some photons will make it, while others will get absorbed or
more likely scattered and sent off in a different direction only to be scattered again and
again. There is however an additional effect which is the key to the Horne and Marsh
model. Imagine a cross section of part of the disk as shown in Fig. 9.7; a 16563 photon
which travels from within the disk to the disk surface will generally pass through a
small but finite range of distances from the central star. This means that along the
photon’s route the atoms are orbiting at increasingly different velocities to that of the
atom which emitted the photon.

For these atoms to stand a chance of absorbing the photon, their radial velocities
must be zero with respect to the atom which emitted the photon. This means that
they ‘see’ the photon as A6563, otherwise they ‘see’ the photon with a Doppler shifted
wavelength and ignore it; the photon escapes.

Have a look at Fig. 9.8; if the photon were travelling directly away from the central
star, i.e. in an outward radial direction, then while atoms along its route would have
slightly different orbital velocities they would all have zero radial velocity relative to the
atom which emitted the photon. These atoms ‘see’ the photon at A6563 and are only
too happy to absorb it. So a photon doesn’t stand much chance of getting out along
this direction. Now take a photon which travels through the disk in a direction at right
angles to the radial direction; along this line all the atoms including the one which
emitted the photon have the same orbital velocity and the photon itself is travelling in
the same direction as the atoms. These atoms again ‘see’ the photon as A6563 and the
photon very likely gets absorbed. Finally, take a photon which travels in a non-radial
direction, i.e. not directly away from the central star. Once again there are atoms with
different orbital velocities along the way but these atoms also now have different radial
velocities relative to the atom which emitted the photon; they don’t see the photon as
26563 so they ‘let it go” and the photon escapes.

The overall effect is that photons which travel through the disk in a radial direction,
together with those which travel at right angles to this direction stand less chance of
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Figure 9.7. Aiom ‘A’ emits a 16563 photon which travels towards the surface of the
disk. Atoms ‘B’ and ‘C" which lie along its path have different orbital velocities to
afom ‘A’ because they are af different distances from the central star. In order for
either ‘B’ or ‘C’ to stand a chance of absorbing the photon, they must have zero
radial velocity with respect fo atom ‘A’

escaping than those which travel in a direction somewhere in between. In fact, the
most favoured route of escape is for the photon to travel through the disk at 45° to
the radial direction because along this line the photon encounters the greatest range
of radial velocities so the atoms leave it alone. This range of radial velocities across
the thickness of the disk is called by Horne and Marsh the shear velocity. Its over-
all effect on the line profile is to deepen the central reversal into a ‘V’ shape which
matches real observed line profiles much more closely. Horne and Marsh added an
extra level of complexity but also an extra level of realism to the Smak model; in
some ways it seems merely like an over fussy detail, but here the details are every-
thing.

Thinking Up an Even Better

So far we’ve seen how to develop a pretty good model for producing simulated line
profiles which can be used to match the real thing. The model still has its limitations
though; Horne and Marsh admit that their model breaks down for disk inclinations of
more than about 87° but an even more obvious limitation is the fact that as it stands,
the model can only produce profiles with emission peaks of equal height because the
distribution of radial velocity across the surface of the disk is totally symmetrical.
It’s generally reckoned that the accretion stream—the stream of gas issuing from the
mass-losing star in the binary system, causes a ‘hot spot’ as it hits the outer rim of
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Figure 9.8. Atom A lies nearest o the rear surface of the disk; atom C is closest to
the front surface and B and C lie along the path of the photon emitted by atom A. In
case a; B and C have slightly different orbital velocities to A as indicated by the
different lengths of the velocity arrows but they are moving across A's line of sight;
there is zero radial velocity between the atoms, so B and C ‘see’ the photon as
16563 and are more likely to absorb it. In case b; we're seeing a very small area of
the disk and over this small area atoms B and C have the same orbital velocities as A;
again there is zero radial velocity between the atoms and the photon very likely gets
absorbed. In case c; the photon is emitted at an angle fo the radial line drawn from
afom A to the central star. Atoms B and C now also have non-zero radial velocities
relative to atom A as well as different orbital velocities. They ‘see’ the photon Doppler
shiffed—the photon escapes.

the disk. Some authors even argue that the stream initially passes straight through the
disk and out through the far rim on a highly elliptical orbit, before re-entering and
causing yet a further hot spot. These hot spots are other sources of emission whose
apparent location on the disk will vary as the binary rotates; this could clearly cause
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Figure 9.8. (Continued)

asymmetry in the emission peak heights and also affect the central reversal depth. We
could obviously go on for ever, but the further we go the harder it gets so I guess now
is the time to stop. Even if you're not sure about the physics (ask a friend with a physics
degree) and don’t like the math (I'm sure he could do this too) thinking up ever more
realistic models is great fun—for professional astronomers too.

One final word; just because you’ve thought up and developed a model which seems
to give great fits to your observations doesn’t mean to say that it’s the correct model.
If someone else out there has an alternative model to explain the same thing, the
chances are they’ll want to shoot your model down in flames, so be prepared to have
to defend it.

pelanlel @

* Astronomers develop ‘models’ to try to explain their observations.

* Models should always start very simply with only a gradual addition of more com-
plexity or realism.

* Emission lines from accretion disks are double-peaked with broad wings and a
central reversal.

e The double-peaked profile shape results from the distribution of radial velocity
across the surface of the disk.

* A simple model to explain disk line profiles allows photons to escape freely from
the disk—the disk is said to be optically thin.
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* A more realistic model which gives a better fit to the observations assumes an
optically thick disk which also has a finite physical thickness.

Photons can more readily escape along directions where there is a greater range of
radial velocities or shear velocity across the thickness of the disk.

Accretion disk line profiles are a good example of how spectral line profiles can be
affected by the large-scale motion of material.



The P Cygni
Profile and Friends

If there’s one spectral line profile which most amateur astronomers have heard of it’s
the P Cygni profile. P Cygni itself is a class B star lying in the plain of the northern
Milky Way close to the second magnitude star Gamma Cygni. P Cygni profiles are all
to do with stellar winds and they come as we shall see in various interesting guises.

The classic P Cygni line profile is shown in Fig. 10.1; it consists of a broad intense
emission line with a less intense and narrower absorption line displaced to the blue
side of the emission line. This famous line profile shape is caused by large-scale motion
of material (i.e. hot gas) but this time the moving material is an outflowing wind from
the star.

In some ways we have a situation here not too dissimilar to that of a planetary
nebula; ultraviolet radiation from the hot star’s photosphere ionises the surrounding
wind material. Recombination then causes this material to produce emission lines.
There is a big difference here though; whereas the rate of outflow of material in a
planetary nebula is pretty low; only perhaps a few kilometres per second, the outflow
rate in a hot star’s wind can easily reach several hundred kilometres per second and
in the case of Wolf-Rayet stars as much as 1000 km/s. Just as rotational motion is the
main cause of line broadening in accretion disks, with outflowing stellar winds it is
the motion of the wind material itself which broadens the line profile. A faster wind
will produce broader emission lines and in the case of Wolf-Rayet stars, emission lines
become broad emission bands. Because of the high temperatures involved with these
hot stars, spectral lines due to very highly ionised elements are produced and many

1
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Figure 10.1. The classic P Cygni profile consists of a broad intense emission line
together with a less intense and somewhat narrower absorption line displaced fo the
blue side of the emission line.

of these lines lie in the ultraviolet part of the spectrum. However, lines due to neutral
and ionised helium (Hel and Hell) and sometimes the Ho line can be seen as P Cygni
profiles in the optical region.

Interpreting the P Cygni profile in terms of what’s happening in the neighbourhood
of a star which is producing these kinds of lines is really quite easy; though there is
one point which perhaps needs a little clarification. Have a look at Fig. 10.2. Here

e

‘)»7 Emission Emission - >
0 0

Out flowing
wing

N\

¢ To observer

Figure 10.2. This is how the P Cygni profile is produced. The out flowing wind is
photo ionised by the hot star and produces emission lines which are broadened
primarily by the flow of wind material. Absorption in the wind region between the sfar
and the observer produces the blue-shifted absorption line.
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we have a hot star with a fast outflowing wind which is spherically symmetric, i.e.
the same in all directions. The atoms which make up this wind are photoionised by
high-energy radiation from the stars and so the wind is literally glowing with emission
line radiation. Seen by a distant observer there is clearly a region of this wind which is
hidden behind the star and so our observer sees nothing of this region which would
produce the emission with the largest red shift. The regions of the wind which are seen
on either side of the star are responsible for the emission line profile; they incorporate
arange of Doppler shifts both blue from the near or approaching side of the wind and
red from the rear receding region. There is also material which is moving across our
line of sight and the result is an emission line which is broadened by these Doppler
shifts. The material which is crossing our line of sight corresponds to the wavelength
of the center of the emission line.

Now let’s think about the wind material which is coming straight towards us and
lies directly between us and the star. This stuff is responsible for the absorption line
and because this material is aimed straight at us, it has the largest blue shift. Hang
on though! Isn’t this material supposed to be producing emission line radiation too,
just like the other parts of the wind? How then can it produce an absorption line?
First, think about the wind regions on either side of the star; this material absorbs
photons from the star and these photons are coming from one direction only—namely
from the star itself. When photons are emitted by this material, they come out in all
directions so there is a net loss of photons going straight out from the star; put another
way, without the wind material there, all photons would head out straight away from
the star but with the wind material present, many of these are lost, recycled and sent
out in all directions. So, many of the photons which were coming straight towards us
from the star have been sent off in other directions by the wind material and this net
loss shows itself as a (blue shifted) absorption line.

A useful bit of information which can be obtained directly from a spectrum is
the velocity of the stellar wind; this comes simply from the difference in wavelength
between the center of the emission line and that of the absorption line. Simply plug
this wavelength difference into the simple Doppler effect formula to get the wind
velocity. Even at Wolf-Rayet star wind speeds the simple Doppler formula should be
quite sufficient.

P Cygni profiles are most famous for their connection with the hottest stars; the
combination of emission lines with a fast outflowing stellar wind gives us the classic
profile shape. However, the defining feature of a P Cygni profile is not so much the
emission line but the blue-shifted absorption line, because this alone is the telltale
signature of the wind. Cooler stars have winds too; our own sun has its solar wind
and even red giants have outflowing winds. In the case of a red giant the wind is a
slow one—maybe 10 or at most 20 km/s but the wind material can be relatively dense
and so we’'d expect there to be some kind of absorption caused by this wind. Red
giants don’t have emission lines as a permanent feature of their spectra but they do
have plenty of absorption lines in addition to the molecular bands. Extra absorption
is produced by the wind material and this can show itself as an additional absorption
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component to a stellar absorption line which is shifted to the blue side of the line
center as shown on Figs. 10.3 and 10.4.

In some ways the setup here is similar to that for a hot star, i.e. outflowing wind,
absorption by wind material, etc. The big difference is obviously that the environment
here is too cool for the wind to produce emission lines; nonetheless this blue-shifted
absorption component does classify the line as a type of P Cygni profile.

A P Cygni Profile

Here’s yet another type of P Cygni profile and this time its exact cause is still subject to
much debate among astronomers. Fig. 10.5 shows the Hot line profile of the symbiotic
star AX Persei; here we have an emission line with broad wings and what certainly
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Figure 10.5. The Ha line profile of the symbiotic star AX Persei showing a slightly
blue-shiffed absorption component.

looks like a deep absorption component just to the blue side of the line center. This
absorption component suggests a dense but slow outflowing wind, which from what
we saw above seems to be the hallmark of a red giant. The emission line itself clearly
tells us that there’s something hot within this system and the extended wings suggest
fast moving material; however there isn’t an additional absorption component with a
larger blue shift which would suggest absorption in an outflowing fast wind. So here
we have a puzzle!

First a word or two about symbiotic stars which might give us one or two clues;
they are variable stars of course but they’re something of a ‘rag bag’ bunch in the sense
that there is no standard model for what a symbiotic star actually is. In fact, they are
in a sense almost totally defined by the nature of their spectra which generally consist
of three ingredients. Firstly, the spectrum of a cool giant is present often of class M
with all the usual absorption lines together with bands due to molecules. Secondly,
there are virtually always emission lines, not just the Balmer lines but lines which
involve much higher ionisation potentials. Finally, there is a continuum in the blue
region of the visible spectrum; this kind of feature is of course not seen in the spectra
of ordinary red giants. The blue continuum is usually ascribed to what researchers
call a ‘hot source’ within the system and it’s generally reckoned that this hot source
somehow produces the emission lines. The bottom line to this is that symbiotic stars
are regarded by most as binary stars with a red giant, a hot star of maybe class O or B
and surrounding gas which gets ionised by the hot star.

Another possibly important clue is that while the absorption component is almost
always just to the blue side of the emission line center, this is not always the case; Fig. 10.6
shows the Ha line for the star BX Monocerotis, where we have the opposite situation
with the absorption component just to the red side of the line center. In the world of
P Cygni profiles, this is usually taken to be the result of in falling material rather than an
outflowing wind. Imagine reversing the direction of the wind flow arrows in Fig. 10.2;
the emission line profile would remain unchanged but the absorption line would now
shift over to its red side.
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Figure 10.6. The Ha line profile of the symbiofic star BX Monocerotis showing a
slightly red-shifred absorption component.

The small Doppler shift for the absorption component certainly suggests that we’re
reasonably safe in assuming that this is indeed caused by the red giant wind. However,
one thing that we do have to bear in mind is that here we’re dealing with a binary
system and not just a single star with an outflowing wind. It may well be that in many
instances we see the emission line (produced in some way by the hot star) shining
through and suffering absorption in the outflowing wind of the giant. Occasionally
though we appear to be witnessing the emission line shining through red giant wind
material which is perhaps falling towards the hot star. This in itself raises the question
as to the exact location of the source of the emission lines; are they produced in close
proximity to the hot star or are they a less localised phenomenon?

Let’s take the close proximity idea first; this suggests of course that the hot star
can accrete material from the red giant wind. It has even been suggested that some
symbiotic stars may contain an accretion disk just like cataclysmic binaries. Unlike
their smaller cousins, however, symbiotic accretion disks are likely to be the result of
accretion from the wind rather than by Roche lobe overflow which produces accretion
disks in CVs. Material in whatever form in close proximity would be an obvious source
of emission lines because it would be photoionised by the high-energy radiation from
the hot star. Material close to the hot star would also be moving rapidly and this would
fit the bill for explaining the broad wings in the line profile. An emission line shining
through in falling or outflowing wind material would determine the position of the
absorption component in the spectrum by why we predominantly see a blue-shifted
component but sometimes a red-shifted one is still open to debate. Another feature of
these symbiotic P Cygni profiles is that they do vary in prominence and appearance.
As the professionals say ‘more observations are needed” and amateur spectroscopists
who can take high-resolution spectra could do no better than monitor these strange
stars.
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We're not quite finished with symbiotic stars; many if not more of them show
emission lines which are fairly narrow and show no trace of any absorption component.
In these cases it’s likely that the hot star, rather than accreting red giant wind material
is simply photoionising a large part of the wind itself turning it into some kind of small
dense planetary nebula. Indeed symbiotic spectra can also contain forbidden lines due
to doubly ionised oxygen just like planetary nebulae—truly remarkable stars!

In conclusion, P Cygni profiles can show up in probably any situation which involves
absorption in an extensive area of material surrounding a stellar system.

* The classic P Cygni profile consists of a broad intense emission line with a blue-
shifted absorption component.

* P Cygni profiles are another example of how line profile shapes are determined by
the large-scale flow of material in and around stellar systems.

* The defining feature of a P Cygni profile is not an emission line but rather a Doppler
shifted absorption component. It’s possible to have P Cygni profiles without emis-
sion lines, e.g. in the spectra of red giants.

* Symbiotic stars often show P Cygni profiles in their spectra but their interpretation
is still open to debate.



Spectral
Magnetism—The
Zeeman Effect

As kids we all played with magnets; these pieces of metal show more dramatically
than anything just how a force can act across empty space. We probably all played
with a compass too and perhaps like the young Albert Einstein were mystified as
to how the needle kept pointing in the same direction no matter which way we
turned the compass. Magnetic fields are produced by electric currents or flows of
electric charge; the outer or optically active electrons in an atom constitute tiny electric
currents which generate tiny magnetic fields. If a population of these atoms find
themselves in an external magnetic field their tiny magnetic fields respond to produce
a wonderful phenomenon called the Zeeman effect in honour of the Dutch physicist
Pieter Zeeman.

A bar magnet has two poles; a north pole and a south pole and as we may remember
from high school physics, two like poles will push each other apart, whereas two unlike
poles will try to pull themselves together. If we try to push two north poles towards
each other, the force trying to push them apart gets stronger as they get closer together.
Clearly the strength of the magnetic field surrounding the magnet increases as we get
nearer to the pole itself. The standard unit of magnetic field strength which is most
commonly used in astronomy is called the ‘gauss’; named after Carl Friederich Gauss.
You may also come across another unit which is used widely by physicists called the
‘tesla’ named in honour of a Croatian-American electrical engineer called Nikola Tesla.
One tesla is equal to 10,000 (10%) gauss.

2
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The best way to get a ‘feel’ for what might be unfamiliar units like these is to first of
all take the Earth’s magnetic field; this has a strength of about 0.3 G at the equator to
about 0.6 G at the magnetic poles. The Sun’s overall magnetic field strength is about 1
to 10 G but in sunspots, magnetic fields can reach strengths of 1500 to 3000 G (this is
0.15t0 0.3 T). Among the most powerful magnetic fields encountered in the universe
are those of magnetic white dwarf stars which have the awesome strength of from
100 to 10° T (10° tesla is equivalent to 1 billion gauss!). Even these though pale by
comparison with the fields of magnetic neutron stars or magnetars which can reach
10" T.

Way back in Chapter 3 we learned that the I sublevels in an atom are themselves
divided into sub-sublevels which are identified by the magnetic quantum number .
Remember that #; has whole number values (including zero) running from —/ to +1/;
so for example the I = 3 level splits into seven my levels. However, most of the time
these m; levels are dormant and correspond to the same energy for a given value of /;
now it’s time to ‘wake’ these ‘sleeping’ levels by applying a magnetic field. When we do
this the my levels separate out and have slightly different energies; m; = 2 has slightly
higher energy than m; = 1 which in turn has slightly higher energy than #; = 0 and
so on.

So far, aside from the energy differences between levels, these quantum numbers
have been little more than a kind of code or address system for telling us ‘whereabouts’
in an atom an electron actually is. The magnetic quantum number clearly has im-
portant physical significance for electrons in atoms which are subjected to an outside
magnetic field. To understand this significance and the role it plays in the Zeeman
effect, we need to look at a very interesting bit of physics.

I WREDE R RE2T ] [N ]

The idea that energy is something which can do work and move things around is very
familiar; perhaps not quite so familiar is the nature of momentum even though the
word itselfis very common. Energy can be possessed by something which is motionless;
this kind of energy is not surprisingly called potential energy. For example, an apple
hanging on a tree has the potential to fall and on the way down it could hit a small
lever on the other end of which was a ping-pong ball which could be thrown through
the air by the action of the falling apple. There is also energy due to an object’s motion
and this is called kinetic energy. Momentum though is something which exists only
because an object is in motion; there is no version of ‘potential momentum’ Any
moving object has an amount of linear momentum whose value is simply equal to the
object’s mass multiplied by its velocity. A massive object like a truck can have a large
amount of linear momentum even if it’s only moving slowly and a much less massive
object like a bullet can also have a large amount of linear momentum because it travels
so fast.
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There is another form of momentum called angular momentum; this is possessed by
bodies which are revolving like the Earth or moving in an orbit around another body—
again like the Earth orbiting the Sun. I remember a physics exam question which I
had to answer in high school which asked what was the total momentum possessed
by a perfectly smooth pool ball rolling along a perfectly smooth pool table. The ball
obviously has linear momentum because it’s moving along the table and I would
have to stick out my finger to stop it. If my finger were also perfectly smooth though,
the ball even when stopped would still keep revolving—it has angular momentum.
I'd need to apply a twisting action or a torque with non-smooth fingers to stop it
revolving.

For an orbiting object the amount of angular momentum is again equal to the
object’s mass multiplied by its velocity but this time multiplied also by the radius of
the orbit. There’s also another very important feature of angular momentum; it has
direction as well as an actual value and is what physicists call a vector quantity. How
do we give a sense of direction to something which is say, moving around some kind
of circular orbit? Clearly a bullet has a direction as it travels through the air and its
linear momentum which is also a vector quantity, would have the same direction. For
an object moving in a circular orbit, its direction is changing all the time; though
we do know that in the course of its motion, its direction will change by 360°. If the
orbit is stable the actual value of the object’s angular momentum will stay fixed; so
the only thing which remains to say about it is whether it is moving around its orbit
in a clockwise or an anticlockwise manner. If we observe the object to be moving
anticlockwise, then an arrow pointing from the centre of the orbit straight towards us
can be used to indicate this. Conversely, an arrow pointing directly away from us can
be used to show that the object is moving clockwise; these arrows are always drawn
at right angles to the plane of the orbit and what’s more we can use the length of the
arrow to indicate the actual value of the object’s angular momentum. This then is
how the angular momentum of an object moving in an orbit is represented; indeed
the arrow itself is often referred to as the angular momentum vector. In a similar way,
the angular momentum of a revolving object such as a planet can be represented by
an arrow of length equal to the object’s rotational angular momentum and pointing
from the centre of the object towards its ‘north pole’. The north pole of a planet is
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defined by the condition that when you look down on the pole, the planet is revolving
anticlockwise.

An electron moving around the nucleus of an atom has angular momentum and
indeed the I quantum number is called the angular momentum quantum number
because it can be used by physicists to calculate the actual value of the electron’s
angular momentum. The electron’s angular momentum vector would then be an
arrow of length equal to this value and pointing from the atom’s nucleus in the
appropriate direction at right angles to the plane of the electron’s orbit.

::-'-.'.”-'-'_'-'!;II.L”-'!'-'-!!I-'!_

Representing an electron’s angular momentum as an arrow pointing from the atomic
nucleus in the relevant direction may seem a bit strange at first, but it provides us with
a very important piece of information; it tells us about the electron orbit’s orientation
in space. In exactly the same way, the direction of the Earth’s rotational angular
momentum vector tells us that the plane of the equator makes an angle of about 23°
to the plane of the orbit, i.e. the ecliptic. To be more specific, we can choose some
direction in space and call it the x direction; the opposite direction would then be
called the —x direction. Space is three-dimensional so a direction at right angles to
the x direction can be called the y direction (with a corresponding — y direction) and
finally the direction at right angles to both the x and y directions would be called the
z direction. We can talk about distances measured along these three directions from
some chosen starting point; what we have now is a reference frame or as it’s sometimes
called; a coordinate frame. The x, y and z directions are then referred to as the x, y
and z axes.
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Figure 11.3. The direction of the Earth's rotational angular momentum vector tells in
effect that the plane of the equator is tilled by 23.5° with respect fo the plane of the
ecliptic.

We could now arrange our coordinate frame so that our electron’s angular mo-
mentum vector points straight up the z-axis; the electron’s orbital plane is then the xy
plane. This would make life relatively simple but in real spectroscopy we are of course
dealing with vast populations of atoms and we can’t expect all the angular momentum
vectors to conveniently line up along the z-axis; any electron in an individual atom
will have its angular momentum vector pointing in some arbitrary direction which
makes a different angle with the three axes. However, once we’ve actually established
our coordinate frame, the orientation of any electron’s angular momentum vector can
be specified in terms of these three directions. Again, being more specific, to get from
the foot of our angular momentum vector (at the nucleus) to its tip we need to move
in the correct direction by a distance that corresponds to the value of the electron’s
angular momentum. We can also do this by moving so many units along the x-axis
followed by so many units parallel to the y-axis and finally, so many units parallel
to the z-axis. This operation does exactly the same job; it takes us from the foot of
the angular momentum vector to its tip but in three steps, each of which involves a
displacement along each of the three axes. Each of these three displacements is called a
component of the angular momentum; in this case they are the x, y and zcomponents.
Any vector quantity, i.e. a quantity which is specified by a direction in space as well
as a value or magnitude, can be resolved into three components, once a coordinate
frame has been specified.

Adle[e])

A magnetic field is another vector quantity; it has direction as well as magnitude; the
direction is that in which a north magnetic pole would move and the magnitude is the
amount of force which the pole experiences. Real magnetic fields will vary in strength
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and direction from one point in space to another but here it’s vital to keep things
simple; so let’s assume that we have a magnetic field whose direction and strength are
the same everywhere. The strength will be measured in gauss and we can conveniently
arrange our coordinate frame so that the magnetic field points along the z-axis.

Now let’s place in the magnetic field some atoms which are going to undergo electron
transitions which here we’ll assume will produce emission lines. An atom may contain
a closed shell of electrons; the magnetic fields of these electrons effectively cancel each
other out so they have no role to play here. To keep things simple let’s assume that our
atoms have just one optically active electron which may for example be in a level whose
I'valueis 3. This / value determines the magnitude of the electron’s angular momentum
and indeed for our purpose here we can make the length of the angular momentum
vector equal to the value of [ itself, i.e. 3. Without the presence of the magnetic field
this vector could point in any direction; the magnetic field though, interacts with the
electron’s magnetic field and this forces the electron’s angular momentum vector (and
of courseits orbital plane) to orient itselfin the field. However, only certain orientations
are allowed under the rules of quantum mechanics and these orientations correspond
to the values of m.

The orientation rule is a simple one; it says that the z component of the angular
momentum vector (this of course is the angular momentum component which is
parallel to the magnetic field) must equal one of the possible values of my; so in the
case we're considering here this means —3, —2, —1, 0, 1, 2 or 3. Let’s see how it works.
The orientation can be along the direction of the field itself; i.e. along the z-axis and
if this is the case, the electron is in the ‘my; equals I’ sub-sublevel or m; = 3. There
are other possible orientations; one possibility is for the angular momentum vector
to point towards the —z direction (here m; = —3) and yet another makes it point
along the xy plane (m; = 0); these orientations give us three of the seven my levels
for I = 3. The remaining four orientations have angular momentum z components
equal to —2,—1, 1 and 2 corresponding to the other allowed ; values; in these cases
the plane of the electron’s orbit is tilted with respect to the direction of the magnetic
field.
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Figure 11.5. When an external magnetic field is present, the electron’s orbit orients
itself in the field so that the component of the angular momentum vector | which is
directed along the field (here made to coincide with the z axis) is equal o one of the
values of the magnetic quantum number m;. A similar set of diagrams would show [
pointing downwards here to correspond to negative values of m.

The I = 3 level is thus split into 7(2] 4+ 1) my levels; each of these has a slightly
different energy, however, the energy difference between two adjacent my levels is
the same and this applies to all my; levels for a given magnetic field. In fact the energy
difference between two m levels depends directly on the strength of the magnetic field;
for example double the magnetic field strength and the energy difference between the
m; levels also doubles.

There’s another interesting feature here; quantum mechanics specifies how the an-
gular momentum vector must orient itself with respect to the direction of the magnetic
field. Here we have chosen this to be the z-axis; however that part of the angular mo-
mentum vector which lies within the xy plane can point in any direction. Indeed,
the electron’s angular momentum vector precesses around the direction of the mag-
netic field, just as the Earth’s axis of rotation precesses around the pole of the ecliptic.
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This phenomenon is called Larmor precession in honour of its discoverer the British
physicist Joseph Larmor.

Electron Transitions in a

Now let’s take our electrons in the I = 3 level and see what happens when they ‘jump’
to the I = 2 level. In a transition the value of I changes from 3 to 2 so the [ selection
rule is obeyed. There is however a new quantum mechanical selection rule which says
that in any transition m; must also change by either 41, —1 or zero. If no magnetic
field were present then the m; levels would be indistinguishable; the electron would
simply go from level [ = 3 to [ = 2 and the emitted photon would contribute to one
single emission line in the final spectrum. The magnetic field together with the my
selection rule means that there are now 15 possible transitions between the [ = 3
and | = 2 levels; however because the m levels are equally spaced in energy, these 15
transitions group themselves in three groups of five where each transition within a
group corresponds to the same change in 1, the same change in energy and hence
same wavelength of light emitted.

The three groups correspond to changesin #; of —1,0and +1; in order of decreasing
energy; the result is that the single spectral line is split into three by the magnetic field.
This is called the normal Zeeman effect. The separation of the three components is
determined by the energy separation of the my levels which in turn is determined by
the strength of the magnetic field. The wavelength of the central component; i.e. the
one which corresponds to no change in m; has the same wavelength that the line would
have in the absence of a magnetic field. There is however a very interesting twist to
this tale.
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Figure 11.7. Here we see all possible fransitions from the | = 3 to the | = 2 level.
Each transition involves a change of m; by either —1, O or +1. Because the m; levels
are equally spaced in energy, the transitions can be arranged info three groups which
results in three spectral lines being observed. If's easy to show that this happens for
fransitions between any two [ levels.
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Looking Straight Down the

At the beginning of Chapter 2 we learned that accelerating electric charges (this in-
cludes oscillating charges) produce electromagnetic radiation. This is very much a
classical physics idea but it can still be applied to quantum mechanical situations
such as we have here. Before quantum theory was developed it was assumed that
electric charges in atoms oscillated continuously thus enabling atoms to emit ra-
diation continuously. The big difference with quantum theory is that there are no
continuously oscillating charges in atoms; instead we have electrons which change
their energy level giving rise to a brief, almost instantaneous emission of radiation
called a photon. Even within quantum theory though, you can think of this en-
ergy change as resulting from the electron changing its state of motion around the
nucleus and this amounts essentially to the electron suffering a very brief burst of
acceleration.

Classical physics says that if an electric charge oscillates along a fixed line then the
radiation comes out at right angles to this line; or more precisely the emitted wave
has maximum amplitude in the direction at right angles to the line. As we move away
from this direction the wave amplitude falls off and becomes zero in the direction
along which the charge is oscillating. Quantum mechanics would say that in this
situation the emitted photon is most likely to go in a direction at right angles to the
direction of the acceleration and increasingly less likely to go in directions nearer to
the acceleration direction. If we could perform an experiment to actually see what
happens, we would indeed observe that the intensity of the emitted light falls off
as we moved our position closer to the line of acceleration. Classical physics would
interpret this as the result of many electric charges oscillating along the same line and
all continuously producing exactly the same kind of electromagnetic wave. By contrast,
quantum theory would interpret the results as due to large numbers of charges each
emitting one single photon at a time, each of which has a different probability of
coming out in different directions. The most important thing here is that if a charge,
e.g. an electron, accelerates along a given line, the emitted light is most likely to come
out at right angles to the line.

The magnitude of an electron’s angular momentum vector is determined by the
electron’s orbital motion around the nucleus of the atom; if that motion changes
in any way then the angular momentum will also change. The angular momentum
vector’s direction is always at right angles to the orbital plane but if we set up our
X, ¥, z coordinate frame then we can think of the projection of the orbital plane
onto the xy plane. The electron’s motion around the nucleus is a combination of
motion in the x, y and z directions so by projecting the orbital plane onto the xy
plane we are thinking about the part of the electron’s motion which is confined to this
plane. The angular momentum for this part of the electron’s motion is of course the
z component, which is the part lined up with the magnetic field according to the rule
described above.

Now think about an electron transition; as described above; m; may change by —1,
+1 or 0. A change in m; means a change in the zcomponent of the angular momentum
and this can only happen if the electron’s motion in the xy plane changes. A change of
motion along the x direction will result in photons being emitted along both the y and
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frame as shown here for
the xy plane. The z
component of the
electron’s angular
momentum results from
the projection of the
electron’s motion onto
the xy plane. The x and |

y components of the s ©
angular momentum are P

defined in a similar way.

z directions since these are both at right angles to the x direction. Similarly, a change
of motion along the y direction will result in emission along the x and z directions.
So if my changes as a result of a transition, photons can be emitted essentially in all
directions. Consider now however the transition which results in no change in m;
this means that the z component of the angular momentum remains constant. For

!

Change in
z component
of electron’s

motion

x component of
X electron’s motion
dosen’t change

Figure 11.10. A transition fakes an electron from the | = 3 level fo the | = 2 level
but with no change in m;. This means that I, remains consfant; this in furn means there
is no change in the x and y components of the electron’s motion. I've shown this here
for the ‘x" component of the motion by projecting the electron orbits onto the xz plane.
In a similar way, projecting the orbifs onto the yz plane would show no change in the
y component of the electron’s motion. All of the change in the electron’s motion which
results from this kind of transition is thus directed along the z axis; i.e. along the
direction of the magnetic field.
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this to be so the electron’s overall motion in the xy plane does not change, but the
overall angular momentum has changed because the value of I has changed. This
overall change in angular momentum can only be due to a change of motion or a
brief acceleration along the z direction. The result is that photons are predominantly
emitted at right angles to this direction, i.e. at right angles to the direction of the
magnetic field; no photons are emitted along the direction of the field. The transition
which involves no change in my is the one which produces the central line of the
three; hence this central line is not observed when looking along the direction of the
magnetic field. This is known as the longitudinal Zeeman effect.

Most text books describe this effect in terms of a pre-quantum mechanics model
developed by the Dutch physicist H.A. Lorentz; this model gives the right answers but
for the wrong reasons. It assumes that the emitted light is produced by continuously
oscillating charges as described above. It does however also correctly predict the relative
intensities of the various line components which are emitted in different directions.
At right angles to the field the central component has twice the intensity of the other
two; the ‘missing bits’ of these other two components are the portions which come
out along the direction of the magnetic field.

Once again there is a simple ‘plug the numbers in’ formula for the normal Zeeman
effect which we can use to give us some idea of how wide apart the components of
a split line are. For wavelengths in angstroms and magnetic field strength H in gauss
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the formula gives the difference in wavelength AX between the components which
correspond to the m; changes by 41 or —1 transitions and that which comes from the
my changes by 0 transition.

AL =467 x 1077 x A2 x H (11.1)

One thing to note here is that the separation of the components depends on the wave-
length squared; this means that any effect will be much greater for longer wavelength
lines.

Let’s try this out on a couple of examples; as usual we’ll use the He line at A6563.
First, take the example of a sunspot with a magnetic field of 3000 G; Eq. (11.1) gives
us

AL = 4.67 x 1071 x (6563)* x 3000 = 0.06 A

This isn’t much of a separation and high-resolution spectroscopy would be needed to
show it. A more promising candidate might be the star AM Herculis; this is the pro-
totype of a class of interacting binaries called polars, whose white dwarf components
have very powerful magnetic fields in the region of 10 million gauss; such fields would
produce a separation of 200 A.

We kept things very simple above when describing the Zeeman effect; in particular we
considered atoms with only one optically active electron and energy levels which in
the absence of a magnetic field are simple so-called singlet levels. Towards the end of
Chapter 3 we saw how atoms which contain a net surplus of electrons with the same
spin produce much more complicated spectra in which the energy levels are split into
triplets, quartets, etc. The magnetic fields resulting from the electrons’ spins interact
as do those from the orbital motions to modify and separate the levels. This means
that for atoms like these there are many more levels to be further split by the action of
a magnetic field; this results in many more possible transitions and results in a single
spectral line being split into possibly many more than three components. This effect
was called the anomalous Zeeman effect because Lorentz’s classical model could not
explain it. With the discovery of electron spin, it was seen to be a very natural effect,
though the name has stuck.

1a olale VICSICINE Jle

The almost delicate interplay between the magnetic fields of several electrons in com-
plex atoms gets completely disrupted (mercifully some would say) by a very powerful
magnetic field. The complicated separation of the lines reverts back to the simple
three components of the normal Zeeman effect; this itself constitutes yet another
effect called the Paschen Bach effect.



@ Spectroscopy—The Key to the Stars

* Orbital motion produces angular momentum.
¢ Angular momentum is a vector quantity; it has direction as well as magnitude.

e For orbital motion the angular momentum vector points at right angles from the
centre of the orbit.

If the orbital motion is seen to be anticlockwise, the angular momentum vector
points towards the observer.

* In a magnetic field an electron’s angular momentum and orbital plane are oriented
at fixed angles to the field which correspond to the magnetic quantum number ;.

¢ In a transition #y; must change by —1, +1 or 0.

The possible changes in m split a spectral line into three components; this is called
the normal Zeeman effect.

The central line componentsis seen best at right angles to the magnetic field direction
and not at all along the direction of the field. This is known as the longitudinal
Zeeman effect.

Complex atoms can give rise to the anomalous Zeeman effect in which a line splits
into more than three components.

Very strong magnetic fields disrupt the magnetic field structure for complex atoms,
resulting in a reversion to the normal Zeeman effect. This is called the Paschen Bach
effect.



‘“How Much Gold
in Them There
Stars?’—The
Curve of Growth

At the beginning of this book I recounted August Comte’s classic claim that chemical
knowledge of the stars was something that mankind would never possess. Unfortu-
nately for Monsieur Comte, not only have astronomers learned to recognise different
chemical elements in stars, they have also often managed to determine how much of
each element is present. The actual amount of a given element which is present in
the atmosphere of a star or indeed throughout the Universe as a whole is called its
abundance, so let’s first see how the abundance of an element is quantified.

One often reads in popular astronomy books these days that about 75% of the Universe
is hydrogen; about 25% is helium and less than 1% is everything else. These figures
are basically true of course but only if we’re talking in term of mass, i.e. so many tons
of hydrogen to so many tons of helium, sodium and so on. What’s often of more
interest to the spectroscopist though is the actual number of atoms which are present
because atoms in a stellar atmosphere knock out photons and more atoms mean that
more photons get knocked out which results in a deeper darker absorption line. If we
talk about abundances in terms of number of atoms, then the Universe is more like
91.5% hydrogen to 8.5% helium and even less of everything else. Both of these ways
of quoting abundance are equally valid however provided you state which one you’re
using.

Whichever way we choose to talk about abundances, hydrogen is by far the most
common element and so the abundance of every other element is almost always
referred to that of hydrogen; so element abundances are in fact relative abundances,

14
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that is, relative to hydrogen. Abundances which are given in terms of number of atoms
will always be less than those given in terms of mass. An atom of any element will
always be more massive than the mass of a hydrogen atom; so as we move through
the periodic table it takes fewer atoms to equal a given fraction of a standard mass of
hydrogen. Abundances in both systems are given as what at first seem like rather small
numbers; the highest one being 12.00 for hydrogen itself. Typical values for helium
are 10.93 if we’re dealing with numbers of atoms and 11.53 if we’re talking about mass;
let’s see how this system works.

Take first the figure of 11.53 for the mass abundance of helium and subtract this
from 12.00 (the hydrogen figure) to get 0.47. If you now fancy a trip down memory
lane, dig out that old book of log tables which you used in high school and look up
the antilog of 0.47. Alternatively you could use your calculator; use the ‘invert’ and
‘log’ keys (log here is log to base 10 not natural log or log to base ‘¢’) followed by 0.47
or for yet another method enter the number 10 followed by the ‘x’” key followed by
0.47. Each of these will give you the answer as 2.95. This tells us that in terms of mass
there are 2.95 times as much hydrogen in the Universe as there is helium. This clearly
fits in with the well known ‘percentage abundances’ of about 75 to 25%.

Finally, let’s see if we can answer the question posed in the title of the chapter; we’ll
do this just for the number of atoms involved. The abundance of gold in terms of
number of atoms is 0.6; so again subtracting from 12.00 gives us 11.4 this time. Taking
the antilog of this (book of tables or calculator) will give the answer as 2.5 x 10'!; this
is the number of times that hydrogen atoms outnumber those of gold, so for every
250 billion atoms of hydrogen in the Universe, there’s just one of gold. Some stars
may contain slightly more gold than this but it’s pretty rare stuff; if you find it in your
backyard, then truly your backyard is a very exotic part of the Universe.

Back in Chapter 5 we learned that the best way to quantify the intensity of a spectral
line is in terms of its equivalent width; i.e. the width in angstroms of an artificial
saturated line having a rectangular profile of area equal to that of the real line profile.
What we want to find out is how the equivalent width of a spectral line changes, as
we increase the number of atoms which are producing it. To do this let’s imagine
doing a laboratory experiment with hydrogen to see how the equivalent width of
our old friend the Hx line changes, as we increase the amount of hydrogen which is
present.

We’d need a source of continuum radiation (basically a very bright light bulb) to
simulate the photosphere of a star; we’d also need some kind of enclosure to contain
the hydrogen and which could be heated to the kind of temperature needed to ex-
cite the hydrogen atoms to the n = 2 level, i.e. about 10,000 K. We’d also need some
mechanism for increasing and measuring the density of the hydrogen in the enclo-
sure and finally a spectroscope to observe the spectrum and measure the equivalent
width.

At relatively low densities, the line profile would be the basic Voigt profile de-
scribed in Chapter 5, i.e. a combination of a naturally broadened profile and a thermal
Doppler broadened profile. As we increase the density of hydrogen, the line profile
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would deepen as increasing numbers of atoms knock out more of the incoming pho-
tons with wavelengths in the vicinity of A6563. The line would also broaden slightly as
the number of atoms with the highest radial velocities increased. Eventually the line
core would reach the bottom of the continuum and the line would become saturated.
After this stage, aside from a very slight increase in core width, increasing the num-
ber of hydrogen atoms would produce virtually no effect on the line profile because
having become saturated, the profile has ‘nowhere to go’ as it were. With still further
increase in density though the effects of pressure or collision broadening begin to set
in; the line profile wings develop and these enable the equivalent width to increase
once more.

If we now plot our results in the form of a graph of equivalent width against
number of atoms, we see that for low densities the equivalent width increases in direct
proportion to the number of atoms which is pretty much what we’d expect. The graph
then almost levels off as we reach the line saturation zone and eventually turns upwards
again as collision broadening sets in. The graph that we have produced is called a curve
of growth; in this case for the Ha line. The part of the graph which we are interested
in here is the so-called ‘linear region’, where the equivalent width increases in direct
proportion to the number of atoms; this is shown in Fig. 12.1.

Imagine the usual vast population of hydrogen atoms with their electronsinthe n = 2
level; this population sits in a radiation field which is capable of producing a spectrum
showing all the optical Balmer lines. The Balmer lines themselves of course result from
transitions from the n = 2 level to the n = 3, 4, 5, etc. levels. Because our radiation
field is capable of producing all of these transitions, it would be natural to presume
that the equivalent widths of all the resulting Balmer lines would be the same. However
this is not so; we would observe that the equivalent width of the Ho line was the largest
followed by that for the Hf3 line and so on.
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Take a hydrogen atom with its electron in the n = 2 level; an incoming 16563
photon can excite the atom to the n = 3 level. This however isn’t guaranteed; as with all
things to do with quantum mechanics there’s a finite probability that the photon will
be absorbed, but also a chance that it will be ‘ignored’ by the atom. An incoming 14861
photon (the wavelength of the Hf3 line) has an even lower probability of doing its job;
namely exciting the atom to the n = 4 level and this trend of decreasing probability
carries on through the Balmer series. So for a given number of atoms the Balmer lines
get progressively weaker from Ha through Hf3 and so on.

There are three ways in which this chance or probability of a photon being ab-
sorbed, is expressed; they are all directly connected to each other but they all occur
in the literature. The first way is not surprisingly called the transition probability and
for absorption this is denoted by the letter B with two subscripts which denote the
lower and upper levels of the transition; so the transition probability for the He line
would be written B,3; that for the Hf3 line, By4 and so on. There are also transition
probabilities for downward, i.e. emission transitions which are written Aj;; Ay etc;
and finally there are transition probabilities for what’s known as stimulated emis-
sion. This phenomenon can happen when an incoming photon can actually cause
an electron to drop down from a higher level to a lower level; stimulated emission
is the process that drives lasers and masers. These transition probabilities are dif-
ferent for different atoms and for different transitions within the same atom; they
are also called Einstein coefficients because it was he who first conceived them (one
of the great man’s non relativity contributions to twentieth-century physics). Their
values which are higher for more probable transitions are either determined by do-
ing spectroscopy lab experiments or by very clever people who enjoy doing quantum
mechanical calculations.

Another term directly related to the Einstein coefficients is the line strength and it’s
important to mention it here, because if you came across it in the literature you could
be forgiven for thinking that this term means the same thing as the equivalent width.
As with the Einstein coefficients, line strengths are just another way of expressing
the chance or likelihood of a transition occurring. The third way of quantifying the
probability of a transition gets its name from classical or pre-quantum physics; this is
the oscillator strength and it’s used quite a lot by astronomers especially in relation to
the curve of growth. Before quantum mechanics it was believed that atoms absorbed
radiation as a result of electric charges within the atom (i.e. electrons) being made
to oscillate; the oscillator strength is simply a quantum mechanical way of expressing
the likelihood that this will happen. This is essentially entirely equivalent to the more
correct interpretation given by the Einstein coefficients but we’ll stick with it here,
because as mentioned above, astronomers tend to use the oscillator strength when
dealing with the curve of growth. The oscillator strength is always denoted by the letter
‘f” and again if we’re specifically referring to a particular transition we use subscripts;
so we write f,3 for the Ho oscillator strength and so on.

A Second Laboratory Experiment

Let’s do our hydrogen experiment again but this time we’ll measure the equivalent
widths of all the Balmer lines; not just the Hoe line. We’ll also keep the density of
hydrogen in the enclosure fixed and low enough that the lines are not saturated. What
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we can’t do now of course is plot equivalent width against number of atoms for a
single line, but if we know the oscillator strengths for the Balmer line transitions, what
we can say is that for our fixed number of N hydrogen atoms, f,3 x N of them will
make the Hax line; f,4 x N will make the Hf3 line and so on. Now instead of having
the equivalent width of just one line for a range of number of atoms, we have instead
the equivalent widths of a series of lines, each for a different number of atoms; the
number of atoms in each case being given by the oscillator strength for the transition
multiplied by the total number of atoms. This time we plot equivalent width against
f x N; N is fixed of course bur f varies as we move through the members of the
line series and so f x N—the number of atoms producing each transition, varies.
Once again we have a curve of growth for hydrogen but this time we are using all the
members of the Balmer series to produce it. The reason for doing things this way is that
we can’t change the number of atoms of any element including hydrogen in the outer
layers of a star, but we can observe and determine the equivalent widths of whole series
of lines and plot curves of growth, provided we know the relevant oscillator strengths;
as mentioned above these have been determined for many transitions by calculation
based on quantum mechanics or by laboratory experiments.

Multiplying the total number of atoms by the oscillator strength for a transition gives
the number of atoms which produce the spectral line corresponding to the transition
and this of course determines the equivalent width of the line. The ‘total number
of atoms’ here though means the number which are in the right energy level for
producing the transition series we are observing. For the Balmer series, this means
those with electrons in the n = 2 level of course. However, in our vast population of
atoms there will be many whose electrons are in other energy levels, together with
possibly a large number of ionised atoms if the temperature is high enough. If we now
take the ‘total number of atoms’ to mean all atoms of a given element, then we need
to multiply this by a number which gives us first the fraction of atoms which are not
ionised and then by a number which gives us the fraction of these neutral atoms which
are in the required energy level. Finally, as above, we multiply this number of atoms
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by the oscillator strength for the relevant transition. This final number will determine
the equivalent width of the line which gets plotted on the curve of growth.

Astronomers use two equations whose mathematical details we won’t go into here;
the first is called Saha’s equation. This gives the fraction of atoms which are either
ionised or neutral; in addition, for more complex atoms it can give the fractions of
atoms which are in various states of ionisation. All of these fractions depend of course
on the temperature of the gas, but they also depend on the ionisation potential for
atoms with one optically active electron; or the ionisation potentials for succeeding
levels of ionisation in multi-electron atoms. Having calculated the number of neutral
atoms (or indeed the number of atoms for an element in a given state of ionisation,
if we are interested in spectral lines due to ionised atoms) we now need to calculate
the fraction of these which are in a given energy level. This is done using Boltzmann’s
equation; again the number of atoms in a given level depends on temperature, but this
time also on the excitation potential for the required energy level, i.e. the energy in
electron volts needed to raise the electron to that level.

Summarising; we start with the total number of atoms N and multiply by a term
derived from Saha’s equation (let’s call this ‘S’) to give us the number of neutral
atoms; if the temperature is sufficiently low, then all the atoms will be neutral and
S will simply equal 1. We then multiply the number of neutral atoms by the term
derived from Boltzmann’s equation which we can call  B’, to give the number of atoms
in the appropriate energy state and finally we multiply this by the oscillator strength
f for each transition to give the number of atoms which contribute to each spectral
line in a series. The equivalent width which we can call ‘W’ will be proportional to
this number, provided the lines are relatively weak, i.e. not saturated; so we can say

W= Aconstant x Sx Bx f x N (12.1)

A (Very Small) Bit of Mathematics

Here are two very simple facts about logarithms:

¢ The logarithm of the product of two or more numbers is equal to the sum of the
logarithms of the individual numbers. So

log(A x B) = log(A) + log(B) (12.2)

¢ Thelogarithm of the ratio of two numbers is equal to the difference of the logarithms
of the individual numbers. So

log(A/B) = log(A) — log(B) (12.3)
If we convert Eq. (12.1) into logarithms we can write it like this
log(W) = log(constant x S x B x f) + log(N) (12.4)

Armed with this vital bit of mathematics, we can now start to determine element
abundances.
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It probably goes without saying, that in order to determine the relative abundance of
some element in the outer layers of a star we first need to be able to identify the spectral
lines for that element and also the transition series to which they belong. This will
enable us to look up the relevant ionisation and excitation potentials together with
all the relevant oscillator strengths. We would also do the same thing for the Balmer
lines in order to determine the relative abundance for the element. As indicated above,
we’ll also confine our attention to relatively weak unsaturated lines so that we can use
Eq. (12.4).

The first thing to do is to determine the equivalent widths of the Balmer lines and
the element lines and convert these into logarithms. This gives us two sets of values
for log(W). Now have a look at Eq. (12.4); the ‘constant’ on the right-hand side has
only a trivial scaling effect on the curve of growth plot and we can ignore it. The
factors S and B which come from the Saha and Boltzmann equations depend in part
on the temperature, which we may not have reliable information about; however we
can assume that within the part of the star’s atmosphere where the lines are formed, it
is constant; so again we can ignore it. Ionisation potentials, excitation potentials and
oscillator strengths can be looked up from standard reference sources. The remaining
big unknown of course is ‘N’ the total number of atoms; but this is the number we’re
trying to find and oddly, just for the moment we ignore it.

We now produce two curves of growth by plotting log( W) against log(S x B x f);
one for the hydrogen lines and one for the element lines. The result will be two
sloping straight lines which are parallel to each other but displaced relative to each
other along the horizontal axis. A line drawn parallel to the horizontal axis which
crosses both plots corresponds to equal equivalent widths; if we denote ‘H’ to stand
for hydrogen and ‘E’ to stand for the other element then Eq. (12.4) tells us that on this
line

log(S x B x f)y + log(N)y =log(S x B x f)r + log(N)g (12.5)
A
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A bit of swapping round gives us
log(S x B x f)y —log(S x B x f)g =log(N); — log(N)u (12.6)

The bit on the left of the equal sign is just the horizontal displacement of the two
curves of growth and by using the vital Eq. (12.3), the right-hand side becomes

log(N); — log(N)y = log( N/ Ni) (12.7)

The left-hand side here will always be negative because hydrogen is more abundant
than any other element; this means that the left-hand side of Eq. (12.6) will also be
negative. This results from the fact that the curve of growth for any element will always
be to the right of that for hydrogen in a curve of growth plot, because the equivalent
widths of the element lines will be less than those for the hydrogen lines.

As an example, suppose the horizontal displacement of our two plots equals —4;
by convention log( N)y always equals 12 so in this case log(N)g must equal 8. The
abundance of our element ‘E’ would then be given as 8.

This then in principle is how it’s done; overall cosmic abundances have been pretty
well worked out, although abundances among different stars and for that matter in
objects like planetary nebulae can vary. The result is that abundance determination
using curve of growth methods is still a fairly active area of research.

* Element abundances are usually listed as logarithms relative to hydrogen which has
a value of 12.00.

¢ The increase of optical depth of a spectral line with the number of atoms producing
it is called a curve of growth.

e Using stellar spectra, a curve of growth for a spectral series from some element is
plotted alongside one for hydrogen; the horizontal displacement of the two plots
gives the relative abundance of the element.



Conclusion

This has been a theory book for observational amateur astronomers. This is perhaps
a bit unusual because most astronomy ‘theory books’ tend to be written for armchair
astronomers and they tend to deal with fairly exotic subjects like black holes and
cosmology. Spectroscopy however is different; for one thing it’s a fairly new area of
research for amateurs, so until now there hasn’t been much of a compelling need
for a book like this. The other thing is that spectroscopy by its very nature involves
a lot of physics and most amateur astronomers don’t have physics degrees. There
was, [ reckon, an urgent need to provide an explanation of some of the theory behind
spectroscopy, including the relevant physics. That was the main idea behind this book.

I hope that by now you’ve gained a deeper insight into spectroscopy and most of
all come to realise (if you didn’t realise already) that spectroscopy involves far more
than just identifying lines in spectra. Indeed, identifying spectral lines is very likely
the subject for another book; one which needs to be written by someone with many
years of observational experience. Maybe out there, there’s a kind hearted professional
astronomer or a pioneering amateur who could do this. If, as a result of reading this
book however, you can better appreciate the things which are going on in your spectra,
then I reckon I've done my job.

Clear skies and good luck with your spectra.



Appendix A—
Powers of Ten

First take as an example the number 2.9 and multiply it by 10: we get 29 of course
29x10=29
Similarly
2.9 x 100 = 290
2.9 x 1000 = 2900 and so on.
We are simply moving the decimal point one place to the right each time. Now take
2.9 x 100,000,000,000

Here we have to make a conscious effort to count the zeros and for each one of them,
move the decimal point one place to the right. So we get

290,000,000,000

This is not a very elegant way to write two hundred and ninety thousand million. A
much better way is to use scientific notation.
100 = 10 x 10, i.e. 10 multiplied by itself twice
1000 = 10 x 10 x 10, i.e. 10 multiplied by itself 3 times
10,000 = 10 x 10 x 10 x 10, i.e. 10 multiplied by itself 4 times and so on.

Scientific notation writes these numbers like this
100 = 10?
1000 = 10’
10000 = 10*and so on.
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You can see the advantage of writing a number like 100,000,000,000, i.e. one hundred
thousand million as 10'". You pronounce this ‘ten to the eleven’ A number like 10'!
is also referred to as ‘10 to the power 11’ or ‘10 raised to the power 11. Back to our
number 2.9; now instead of writing 2.9 x 100,000,000,000, we can simply write this
as

2.9 x 101

This is an example of scientific notation. The 10 raised to the power bit is called the
exponent.
Let’s take our 2.9 x 10!
It comes in two parts: 2.9 and 10!
We could multiply the 2.9 by 10 to get 29 and then we would have

10 x 2.9 x 10" =29 x 10"

However, you would never write this number like this. The first part of a scientific
notation number should always be greater than 1 and less than 10. We keep the first
bit as 2.9 and so we multiply the 10'! bit by 10 instead.

10'! x 10 becomes 10 multiplied by itself 12 times, i.e. 10!2. So our scientific notation
number is written as

2.9 x 10"2

The ‘11’ in 10! is often referred to as the index of the power of 10. Notice above
that when we multiplied 10!! by 10 we simply increased the value of the index by 1 to
get 10'2. Had we multiplied 10'! by 100 (i.e. 10%) we would have got 10", Multiplying
by 1000 (10°) would have given us 10'* and so on. In other words, when we multiply
two powers of 10 together, we simply add the two indices; e.g.

107 x 10" = 10'%etc.

Just as 10? is the number 1 with 2 zeros after it and 103 is the number 1 with 3 zeros
after it etc. the number 10 on its own is the number 1 with 1 zero after it, i.e.

10 = 10';
and the number 1 is of course 1 with no zeros after it, i.e.
1=10°
Now let’s multiply together, two numbers in scientific notation, so let’s work out
2.9 x 107 x 3.6 x 10°
First, multiply the powers of 10
107 x 10° = 10"
Using our calculator
2.9 x 3.6 =10.44

So this would initially give us 10.44 x 10'? but remember we keep the first part of the
number less than 10. So we divide it by 10 to give us 1.044 and we must multiply the
exponent (the powers of 10 bit) by 10 to balance the books. So we get

1.044 x 10"
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Now let’s try dividing two powers of 10; let’s try
10°/10?

This of course is just 100,000/100—the zeros cancel out to give 1000. 1000 is of course
10°, but notice that 3 = 5 — 2. In other words, when we divide one power of 10 by
another, we simply subtract the lower power from the upper power, e.g.

10"2/107 = 10°

So far we’ve talked about a power of 10 in terms of the number of zeros after the
‘1’ by which we mean of course the number of zeros to the right of the ‘1’ and we get
a positive index for our power of 10. So if we think of a zero to the right of the ‘1’ as
contributing to a positive index for the power of 10, we could think of a zero to the
left of the ‘1’ as contributing to a negative power of 10 index. Thus the number 0.1
(written this way as opposed to .1) has one zero to the left of the ‘1’ and in fact

0.1=1/10=10""
0.01 = 1/100 = 1/10* = 1072 : the ‘1’ has 2 zeros to its left
0.001 = 1/1000 = 1/10°> = 107> : the ‘1" has 3 zeros to its left

So for example 0.000001 = 1/1000000 = 1/10° = 10~°
This is consistent with the rules for multiplying and dividing powers of 10, e.g.

107 x 107* = 107 x 1/10* = 107/10* = 107~% = 10°

Summarising so far, we can use scientific notation with a positive power of ten index
to very conveniently represent large numbers; e.g. 2.9 x 10'® and by using a negative
power of ten index, we can neatly represent very small numbers, e.g. 2.9 x 10718,
What about square roots and cube roots and so on? Can we use scientific notation
here?

100 is 10 x 10 which is 10% of course. 10 is the square root of 100. But 10 is of course
10%. So to get the square root of 100 we divided the index on 107 by 2; i.e ,/10% is
simply 10*2 which equals 10, i.e. 10.

The square root of 10 is 100, i.e. 10>. Once again to get the square root, we divide the
power of ten index by 2.

10 is the same as 10! and so by the same token, to get the square root, we divide the
power of ten index by 2. So /10 = /10! = 10!/
So /10 = 10"/
In a similar way the cube root of 10 is given by 10'/; the fourth root by 10'/* etc.
Now take for example the number (10*); this is not the same as 10* x 10°, it is the
number 10* multiplied by itself 6 times. Do this longhand and you can see that you
get a 1 with 24 zeros after it; i.e.

(104)6 — 10(4><6) — 1024

Now note that a number like (2.9 x 10*)° is equal to (2.9)° x 10*

Right! Let’s do a full-blown formula in scientific notation. Back in the 1970s, theoretical
physicists were thinking about an interval of space which was so small that Einstein’s
general theory of relativity breaks down and is replaced by a still unknown quantum
theory of gravity. How big would this interval be? The formula they arrived at is given
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by

L is called the Planck length, G is the universal constant of gravitation = 6.67 x 1071,
h is Planck’s constant = 6.6 x 1074, ¢ is the speed of light = 3 x 10%
So we have

L [6.67 x 1071 % 6.6 x 10—34}“2
(3 x 108)°
Let’s sort out the powers of 10 first
107" x 107* gives us 10™*
(108)} = 10%*
107%/10** = 107%
Now the number bits
6.67 x 6.6/3% = 44.022/9 = 4.89

So far we have 4.89 x 10~% but we need the square root of this. To get the square
root of 107%° we need to divide the index of the exponent by 2 but this is awkward
unless we have an even numbered index. So, breaking the rule above (we are after all
in the middle of a calculation and we’ll be sure to write the number correctly at the
end) let’s write 4.89 x 107 as 40.89 x 10779, i.e. we’ve multiplied the number bit
by 10 and divided the power of 10 by 10.

The square root of 1077° is 107 and the square root of 40.89 is (use calculator)
6.39.

So our final answer in correct scientific notation is

L = 6.39 x 107% and this distance is in metres by the way—a very tiny distance
indeed.



Appendix B—
Constants and
Formulae

I’ve gathered together here some of the more important physical constants and useful
‘plug the numbers in’ formulae which I've used in the book. As well as enabling you
to easily calculate useful numbers, these formulae are the key to exploring some piece
of spectroscopic theory and getting a real feel for what’s going on.

These are in what’s known as the MKS or metre (m) kilogram (kg) second (s) system;
also known as the SI system.

Speed of light c: 2.998 x 10% m/s.

Planck’s constant A: 6.626 x 1073* Js.

Gravitational constant G: 6.673 x 107'! Nm?/kg?

Boltzmann constant k: 1.381 x 10~ J/K

Mass of hydrogen Mpy: 1.674 x 107% kg

One electronvolt 1 eV: 1.602 x 10719 ]

One angstrom 1 A: 1071 m
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One Solar mass: 1.99 x 10°° kg
One (sidereal) year: 365.256 (mean solar) days = 31,558,118 s.
One astronomical unit (AU): 1.496 x 10'!' m

([ ] (N | oflc
Energy E Equivalent to Wavelength )\

This gives the wavelength in angstroms which is equivalent to energy in electronvolts.
Wavelength in angstroms = 1.24033 x 10%*/energy in electronvolt (see Chapter 3).

Doppler Formula

Wavelength change AX in terms of velocity v
AL =i xv/c
Velocity in terms of wavelength change
v=1cX AA/A

A and A are in angstroms; v must be in the same units as c; e.g. metres per second.
or kilometer per second.

Relativistic Doppler Formula

1%
1+ -
Ad=ix —E —1

V2
1+§

There’s probably little need to use this for velocities less than about 5000 km/s unless
you're doing high-resolution spectroscopy (see Chapter 4).

Kepler’s Third Law Formula

Orbital period P (e.g. of a binary) in terms of binary separation a and stars’ masses
M, and M,;

3
2 a

T M, + M

P isin (Earth) years, a in astronomical units (AU) and M, and M, are in solar masses
(see Chapter 4).
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Full Width Half-Maximum (FWHM) Formula

The FWHM is the total width in angstroms of a Doppler (or thermally) broadened
spectral line at half its maximum intensity (for an emission line) or depth (for an
absorption line). The temperature of the gas in Kelvin is given by

T =1.968 x 10'* x (FWHM)?*/A;

Ao is the rest wavelength in angstroms of the spectral line (see Chapter 5).

Wien'’s Displacement Law
This gives the wavelength A,y in angstroms at maximum emission for a black body
(a star is a reasonable approximation to this) of temperature T Kelvin.
Amax = 28, 978, 200/T
See Chapter 8

Zeeman Effect Formula

This gives the separation AX in Angstroms between each of the three components of
a spectral line of wavelength A, which is split by a magnetic field of strength H gauss
(see Chapter 11)

AL =467 x 1077 x A5 x H



Index

absolute zero 15, 58

absorptivity 15

alkali metals 37, 38

angstrom, defined 9

angular momentum, defined 129

— quantum number 31-33, 3840, 130
anomalous Zeeman Effect 139, 140
astronomical unit 49, 156

atomic number, defined 20

Balmer continuum 71

— decrement 98,99, 114

— discontinuity 71

—jump 71,77, 80

— series  35-37, 43,70, 77, 114, 144, 145

Boltzmann constant 59

— equation 73, 74, 146, 147, 155

bound-bound transition 27, 28, 30, 34-36, 42, 43, 93
bound-free transition 27, 29, 72

case A recombination 98

— B recombination 98

collision broadening 61, 143

collisional excitation, see excitation, collisional
coordinate frame 130-132, 136

colour excess 80

colour index 80, 81

degenerate (levels) 32, 33, 37-39
dispersion 10, 106

Doppler broadening 59, 60, 63
— velocity 59-61

doublet 38, 41-43, 77

effective temperature 75, 81, 94

Einstein probability coefficients, see probability
coefficients

electronvolt, defined 25

emissivity 15

eV, see electron volt

excitation, defined 29

—, collisional 101-103

—, thermal 29, 43, 73, 93

forbidden radiation 34, 100
forbidden transition 34, 42, 100-103
free-bound transition 27

free-free transition 27,72

frequency, defined 8

fill width half maximum 60, 63, 157

FWHM, see full width half maximum

gauss (unit) 127,128, 132, 138, 139, 157
Gaussian distribution 58

Grotrian diagram 37

ground state 29, 35, 54, 72, 87, 93, 94, 97, 100

h, see Planck’s constant
Heisenberg uncertainty
Principle 55, 56

Inclination

(of accretion disk)
inner quantum number
instrumental profile 62
intercombination lines 41
ionisation, defined 27

— photo, defined 29

— potential, defined 30
— thermal, defined 29
isotopes, defined 20

108, 110-113, 115
39, 40, 102

j, see inner quantum number
joule, defined 25

Kelvin (temperature scale)
defined 15
Kirchoff’s laws 13

£, see angular momentum quantum number
Larmor precession 134

line strength 144

L-S coupling 39, 41

Lyman series 35, 36, 54, 97

m, see magnetic quantum number

magnetic quantum number 31, 32, 128, 133, 140
metastable level(s) 34, 55, 101-103

my, see magnetic quantum number

multiplets 42

n, see principal quantum number

nanometre, defined 9

natural line broadening 55, 57-59, 61-63, 68, 78
neutral atom(s) 20, 29, 36, 41, 73, 74, 145, 146

Oscillator strength  144-147

e
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parameter space 106

Paschen Bach effect 139, 140

Paschen continuum 71

— series 35, 36,71

Pauli exclusion principle 24, 42

permitted radiation 34

Planck’s constant 17, 18, 21, 28, 154, 155
pressure broadening, see collision broadening
principal quantum number(s) 31-33, 37-39
probability coefficients 101

radial motion, see radial velocity

radial velocity ~45-50, 57-59, 62, 106, 108—117
radiation damping, see natural line broadening
radiation field 56, 59, 87, 97, 101, 102, 143
radical(s) 84

reference frame, see coordinate frame
relativistic Doppler shift

formula 47

Russell Saunders coupling, see L-S coupling

s, see spin quantum number

Saha’s equation 73, 74, 146

saturated (line) 53, 142-144, 146, 147
scattering 28

selection rules 34, 38, 42, 101

shear velocity 115, 118

singlet(s) 41, 42, 76, 101, 102, 139
spectral series, see transition series

Index

spin quantum number 31-34, 38, 39
spinup 33, 34, 37-39, 41, 101
—down 33,37, 38, 40, 41, 101

term diagram(s) 37, 38

tesla 127,128

thermal broadening, see Doppler broadening

thermal excitation, see excitation, thermal

transition probability, see probability
coefficients

transition(s), forbidden 34, 42, 100-103

— permitted 34, 42, 101

transition series  35-37, 57, 91, 145, 147

transverse wave 7,8

triplet(s) 40, 41, 43, 76, 101, 102, 139

turbulence velocity 60

Uncertainty principle, see Heisenberg uncertainty
principle

valence electron(s) 36, 38-41, 77, 85, 95
vibration quantum number 89
Voigt profile 63, 142

wavelength, defined 7
wavenumber, defined 10
Wien’s displacement law 94, 157
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